Text generation web UI
A Gradio web UI for Large Language Models.
Its goal is to become the AUTOMATIC1111/stable-diffusion-webui of text generation.
Features
- 3 interface modes: default (two columns), notebook, and chat
- Multiple model backends: transformers, llama.cpp, ExLlama, ExLlamaV2, AutoGPTQ, GPTQ-for-LLaMa, CTransformers, AutoAWQ
- Dropdown menu for quickly switching between different models
- LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA
- Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others
- 4-bit, 8-bit, and CPU inference through the transformers library
- Use llama.cpp models with transformers samplers (
llamacpp_HF
loader) - Multimodal pipelines, including LLaVA and MiniGPT-4
- Extensions framework
- Custom chat characters
- Very efficient text streaming
- Markdown output with LaTeX rendering, to use for instance with GALACTICA
- API, including endpoints for websocket streaming (see the examples)
To learn how to use the various features, check out the Documentation: https://github.com/oobabooga/text-generation-webui/tree/main/docs
Installation
One-click installers
- Clone or download the repository.
- Run the
start_linux.sh
,start_windows.bat
,start_macos.sh
, orstart_wsl.bat
script depending on your OS. - Select your GPU vendor when asked.
- Have fun!
How it works
The script creates a folder called installer_files
where it sets up a Conda environment using Miniconda. The installation is self-contained: if you want to reinstall, just delete installer_files
and run the start script again.
To launch the webui in the future after it is already installed, run the same start
script.
Getting updates
Run update_linux.sh
, update_windows.bat
, update_macos.sh
, or update_wsl.bat
.
Running commands
If you ever need to install something manually in the installer_files
environment, you can launch an interactive shell using the cmd script: cmd_linux.sh
, cmd_windows.bat
, cmd_macos.sh
, or cmd_wsl.bat
.
Defining command-line flags
To define persistent command-line flags like --listen
or --api
, edit the CMD_FLAGS.txt
file with a text editor and add them there. Flags can also be provided directly to the start scripts, for instance, ./start-linux.sh --listen
.
Other info
- There is no need to run any of those scripts as admin/root.
- For additional instructions about AMD setup, WSL setup, and nvcc installation, consult this page.
- The installer has been tested mostly on NVIDIA GPUs. If you can find a way to improve it for your AMD/Intel Arc/Mac Metal GPU, you are highly encouraged to submit a PR to this repository. The main file to be edited is
one_click.py
. - For automated installation, you can use the
GPU_CHOICE
,LAUNCH_AFTER_INSTALL
, andINSTALL_EXTENSIONS
environment variables. For instance:GPU_CHOICE=A LAUNCH_AFTER_INSTALL=False INSTALL_EXTENSIONS=False ./start_linux.sh
.
Manual installation using Conda
Recommended if you have some experience with the command-line.
0. Install Conda
https://docs.conda.io/en/latest/miniconda.html
On Linux or WSL, it can be automatically installed with these two commands (source):
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh"
bash Miniconda3.sh
1. Create a new conda environment
conda create -n textgen python=3.10
conda activate textgen
2. Install Pytorch
System | GPU | Command |
---|---|---|
Linux/WSL | NVIDIA | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 |
Linux/WSL | CPU only | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu |
Linux | AMD | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6 |
MacOS + MPS | Any | pip3 install torch torchvision torchaudio |
Windows | NVIDIA | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 |
Windows | CPU only | pip3 install torch torchvision torchaudio |
The up-to-date commands can be found here: https://pytorch.org/get-started/locally/.
For NVIDIA, you may also need to manually install the CUDA runtime libraries:
conda install -y -c "nvidia/label/cuda-11.8.0" cuda-runtime
3. Install the web UI
git clone https://github.com/oobabooga/text-generation-webui
cd text-generation-webui
pip install -r requirements.txt
AMD, Metal, Intel Arc, and CPUs without AVX2
- Replace the last command above with
pip install -r requirements_nowheels.txt
-
Manually install llama-cpp-python using the appropriate command for your hardware: Installation from PyPI.
-
Do the same for CTransformers: Installation.
-
AMD: Manually install AutoGPTQ: Installation.
-
AMD: Manually install ExLlama by simply cloning it into the
repositories
folder (it will be automatically compiled at runtime after that):
cd text-generation-webui
git clone https://github.com/turboderp/exllama repositories/exllama
bitsandbytes on older NVIDIA GPUs
bitsandbytes >= 0.39 may not work. In that case, to use --load-in-8bit
, you may have to downgrade like this:
- Linux:
pip install bitsandbytes==0.38.1
- Windows:
pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl
Alternative: Docker
ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} .
cp docker/.env.example .env
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model
docker compose up --build
- You need to have docker compose v2.17 or higher installed. See this guide for instructions.
- For additional docker files, check out this repository.
Updating the requirements
From time to time, the requirements.txt
changes. To update, use these commands:
conda activate textgen
cd text-generation-webui
pip install -r requirements.txt --upgrade
Downloading models
Models should be placed in the text-generation-webui/models
folder. They are usually downloaded from Hugging Face.
- Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example:
text-generation-webui
├── models
│ ├── lmsys_vicuna-33b-v1.3
│ │ ├── config.json
│ │ ├── generation_config.json
│ │ ├── pytorch_model-00001-of-00007.bin
│ │ ├── pytorch_model-00002-of-00007.bin
│ │ ├── pytorch_model-00003-of-00007.bin
│ │ ├── pytorch_model-00004-of-00007.bin
│ │ ├── pytorch_model-00005-of-00007.bin
│ │ ├── pytorch_model-00006-of-00007.bin
│ │ ├── pytorch_model-00007-of-00007.bin
│ │ ├── pytorch_model.bin.index.json
│ │ ├── special_tokens_map.json
│ │ ├── tokenizer_config.json
│ │ └── tokenizer.model
- GGUF models are a single file and should be placed directly into
models
. Example:
text-generation-webui
├── models
│ ├── llama-2-13b-chat.Q4_K_M.gguf
In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with python download-model.py organization/model
(use --help
to see all the options).
GPT-4chan
Instructions
GPT-4chan has been shut down from Hugging Face, so you need to download it elsewhere. You have two options:
The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version.
After downloading the model, follow these steps:
- Place the files under
models/gpt4chan_model_float16
ormodels/gpt4chan_model
. - Place GPT-J 6B's config.json file in that same folder: config.json.
- Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan):
python download-model.py EleutherAI/gpt-j-6B --text-only
When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format:
Starting the web UI
conda activate textgen
cd text-generation-webui
python server.py
Then browse to
http://localhost:7860/?__theme=dark
Optionally, you can use the following command-line flags:
Basic settings
Flag | Description |
---|---|
-h , --help |
Show this help message and exit. |
--multi-user |
Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is highly experimental. |
--character CHARACTER |
The name of the character to load in chat mode by default. |
--model MODEL |
Name of the model to load by default. |
--lora LORA [LORA ...] |
The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. |
--model-dir MODEL_DIR |
Path to directory with all the models. |
--lora-dir LORA_DIR |
Path to directory with all the loras. |
--model-menu |
Show a model menu in the terminal when the web UI is first launched. |
--settings SETTINGS_FILE |
Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml , this file will be loaded by default without the need to use the --settings flag. |
--extensions EXTENSIONS [EXTENSIONS ...] |
The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. |
--verbose |
Print the prompts to the terminal. |
--chat-buttons |
Show buttons on chat tab instead of hover menu. |
Model loader
Flag | Description |
---|---|
--loader LOADER |
Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, ctransformers |
Accelerate/transformers
Flag | Description |
---|---|
--cpu |
Use the CPU to generate text. Warning: Training on CPU is extremely slow. |
--auto-devices |
Automatically split the model across the available GPU(s) and CPU. |
--gpu-memory GPU_MEMORY [GPU_MEMORY ...] |
Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB . |
--cpu-memory CPU_MEMORY |
Maximum CPU memory in GiB to allocate for offloaded weights. Same as above. |
--disk |
If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
--disk-cache-dir DISK_CACHE_DIR |
Directory to save the disk cache to. Defaults to cache/ . |
--load-in-8bit |
Load the model with 8-bit precision (using bitsandbytes). |
--bf16 |
Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
--no-cache |
Set use_cache to False while generating text. This reduces the VRAM usage a bit with a performance cost. |
--xformers |
Use xformer's memory efficient attention. This should increase your tokens/s. |
--sdp-attention |
Use torch 2.0's sdp attention. |
--trust-remote-code |
Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. |
--use_fast |
Set use_fast=True while loading a tokenizer. |
Accelerate 4-bit
⚠️ Requires minimum compute of 7.0 on Windows at the moment.
Flag | Description |
---|---|
--load-in-4bit |
Load the model with 4-bit precision (using bitsandbytes). |
--compute_dtype COMPUTE_DTYPE |
compute dtype for 4-bit. Valid options: bfloat16, float16, float32. |
--quant_type QUANT_TYPE |
quant_type for 4-bit. Valid options: nf4, fp4. |
--use_double_quant |
use_double_quant for 4-bit. |
GGUF (for llama.cpp and ctransformers)
Flag | Description |
---|---|
--threads |
Number of threads to use. |
--threads-batch THREADS_BATCH |
Number of threads to use for batches/prompt processing. |
--n_batch |
Maximum number of prompt tokens to batch together when calling llama_eval. |
--n-gpu-layers N_GPU_LAYERS |
Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. |
--n_ctx N_CTX |
Size of the prompt context. |
llama.cpp
Flag | Description |
---|---|
--mul_mat_q |
Activate new mulmat kernels. |
--tensor_split TENSOR_SPLIT |
Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
--llama_cpp_seed SEED |
Seed for llama-cpp models. Default 0 (random). |
--cache-capacity CACHE_CAPACITY |
Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
--cfg-cache |
llamacpp_HF: Create an additional cache for CFG negative prompts. |
--no-mmap |
Prevent mmap from being used. |
--mlock |
Force the system to keep the model in RAM. |
--numa |
Activate NUMA task allocation for llama.cpp |
--cpu |
Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
ctransformers
Flag | Description |
---|---|
--model_type MODEL_TYPE |
Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. |
AutoGPTQ
Flag | Description |
---|---|
--triton |
Use triton. |
--no_inject_fused_attention |
Disable the use of fused attention, which will use less VRAM at the cost of slower inference. |
--no_inject_fused_mlp |
Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. |
--no_use_cuda_fp16 |
This can make models faster on some systems. |
--desc_act |
For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
--disable_exllama |
Disable ExLlama kernel, which can improve inference speed on some systems. |
ExLlama
Flag | Description |
---|---|
--gpu-split |
Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7 |
--max_seq_len MAX_SEQ_LEN |
Maximum sequence length. |
--cfg-cache |
ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. |
GPTQ-for-LLaMa
Flag | Description |
---|---|
--wbits WBITS |
Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
--model_type MODEL_TYPE |
Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
--groupsize GROUPSIZE |
Group size. |
--pre_layer PRE_LAYER [PRE_LAYER ...] |
The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60 . |
--checkpoint CHECKPOINT |
The path to the quantized checkpoint file. If not specified, it will be automatically detected. |
--monkey-patch |
Apply the monkey patch for using LoRAs with quantized models. |
DeepSpeed
Flag | Description |
---|---|
--deepspeed |
Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. |
--nvme-offload-dir NVME_OFFLOAD_DIR |
DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
--local_rank LOCAL_RANK |
DeepSpeed: Optional argument for distributed setups. |
RWKV
Flag | Description |
---|---|
--rwkv-strategy RWKV_STRATEGY |
RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
--rwkv-cuda-on |
RWKV: Compile the CUDA kernel for better performance. |
RoPE (for llama.cpp, ExLlama, ExLlamaV2, and transformers)
Flag | Description |
---|---|
--alpha_value ALPHA_VALUE |
Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both. |
--rope_freq_base ROPE_FREQ_BASE |
If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63). |
--compress_pos_emb COMPRESS_POS_EMB |
Positional embeddings compression factor. Should be set to (context length) / (model's original context length). Equal to 1/rope_freq_scale. |
Gradio
Flag | Description |
---|---|
--listen |
Make the web UI reachable from your local network. |
--listen-host LISTEN_HOST |
The hostname that the server will use. |
--listen-port LISTEN_PORT |
The listening port that the server will use. |
--share |
Create a public URL. This is useful for running the web UI on Google Colab or similar. |
--auto-launch |
Open the web UI in the default browser upon launch. |
--gradio-auth USER:PWD |
set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" |
--gradio-auth-path GRADIO_AUTH_PATH |
Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" |
--ssl-keyfile SSL_KEYFILE |
The path to the SSL certificate key file. |
--ssl-certfile SSL_CERTFILE |
The path to the SSL certificate cert file. |
API
Flag | Description |
---|---|
--api |
Enable the API extension. |
--public-api |
Create a public URL for the API using Cloudfare. |
--public-api-id PUBLIC_API_ID |
Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. |
--api-blocking-port BLOCKING_PORT |
The listening port for the blocking API. |
--api-streaming-port STREAMING_PORT |
The listening port for the streaming API. |
Multimodal
Flag | Description |
---|---|
--multimodal-pipeline PIPELINE |
The multimodal pipeline to use. Examples: llava-7b , llava-13b . |
Presets
Inference settings presets can be created under presets/
as yaml files. These files are detected automatically at startup.
The presets that are included by default are the result of a contest that received 7215 votes. More details can be found here.
Contributing
If you would like to contribute to the project, check out the Contributing guidelines.
Community
- Subreddit: https://www.reddit.com/r/oobabooga/
- Discord: https://discord.gg/jwZCF2dPQN
Acknowledgment
In August 2023, Andreessen Horowitz (a16z) provided a generous grant to encourage and support my independent work on this project. I am extremely grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui.