mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-04 21:10:30 +01:00
Updated Home (markdown)
parent
0d7932146b
commit
678283ea8d
1
Home.md
1
Home.md
@ -1 +0,0 @@
|
||||
Welcome to the text-generation-webui wiki!
|
54
Using-LoRAs.md
Normal file
54
Using-LoRAs.md
Normal file
@ -0,0 +1,54 @@
|
||||
Based on https://github.com/tloen/alpaca-lora/
|
||||
|
||||
Probably not the best way to do it. WIP. Suggestions are welcome.
|
||||
|
||||
## Instructions
|
||||
1. Re-install the requirements
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
2. Download the LoRA
|
||||
|
||||
```
|
||||
python download-model.py tloen/alpaca-lora-7b
|
||||
```
|
||||
|
||||
3. Load llama-7b in 8-bit mode (it only seems to work in 8-bit mode, don't ask me why)
|
||||
|
||||
```
|
||||
python server.py --model llama-7b --load-in-8bit
|
||||
```
|
||||
|
||||
4. Select the LoRA in the Parameters tab.
|
||||
|
||||
## Prompt
|
||||
For this particular LoRA, apparently the prompt must be formatted like this:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
### Instruction:
|
||||
Write a Python script that generates text using the transformers library.
|
||||
### Response:
|
||||
```
|
||||
|
||||
Sample output:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
### Instruction:
|
||||
Write a Python script that generates text using the transformers library.
|
||||
### Response:
|
||||
|
||||
import transformers
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
model = AutoModelForCausalLM.from_pretrained("bert-base-uncased")
|
||||
texts = ["Hello world", "How are you"]
|
||||
for sentence in texts:
|
||||
sentence = tokenizer(sentence)
|
||||
print(f"Generated {len(sentence)} tokens from '{sentence}'")
|
||||
output = model(sentences=sentence).predict()
|
||||
print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}")
|
||||
```
|
Loading…
Reference in New Issue
Block a user