Add SSIM and MSE (using PSNR) scores
This commit is contained in:
parent
9db7bc6adb
commit
5b3fc22f55
@ -66,6 +66,8 @@ def write_line(
|
|||||||
enctime: int,
|
enctime: int,
|
||||||
vmafmean: float,
|
vmafmean: float,
|
||||||
vmafmin: float,
|
vmafmin: float,
|
||||||
|
ssim: float,
|
||||||
|
mse: float,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Write line to data csv
|
Write line to data csv
|
||||||
@ -79,6 +81,8 @@ def write_line(
|
|||||||
enctime (int): Time to encode
|
enctime (int): Time to encode
|
||||||
vmafmean (float): Mean VMAF score
|
vmafmean (float): Mean VMAF score
|
||||||
vmafmin (float): Min VMAF score
|
vmafmin (float): Min VMAF score
|
||||||
|
ssim (float): SSIM Score
|
||||||
|
mse (float): MSE Score
|
||||||
"""
|
"""
|
||||||
with open(datafile, "a", newline="") as file:
|
with open(datafile, "a", newline="") as file:
|
||||||
write = csv.writer(file)
|
write = csv.writer(file)
|
||||||
@ -92,6 +96,8 @@ def write_line(
|
|||||||
enctime,
|
enctime,
|
||||||
vmafmean,
|
vmafmean,
|
||||||
vmafmin,
|
vmafmin,
|
||||||
|
ssim,
|
||||||
|
mse,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -179,25 +185,19 @@ def score_vmaf(outputfile: str, inputfile: str) -> dict[str, float]:
|
|||||||
return vmaf
|
return vmaf
|
||||||
|
|
||||||
|
|
||||||
def score_psnr(outputfile: str, inputfile: str):
|
def parse_kv_files(inputfile: str) -> list[dict[str, Any]]:
|
||||||
"""
|
# create list of dicts. Each dict is one line in the file
|
||||||
Calculate a file's MSE (mean-square error) using PSNR. A lower value is better
|
lines: list[dict[str, Any]] = []
|
||||||
|
|
||||||
Parameters:
|
|
||||||
outputfile (str): Path to output file
|
|
||||||
inputfile (str): Path to input file
|
|
||||||
|
|
||||||
Return:
|
|
||||||
TBD
|
|
||||||
"""
|
|
||||||
ff = ffmpy.FFmpeg(
|
|
||||||
inputs=OrderedDict([(outputfile, None), (inputfile, None)]),
|
|
||||||
outputs={"-": "-lavfi psnr=stats_file=psnr.log -f null"},
|
|
||||||
)
|
|
||||||
|
|
||||||
ff.run()
|
|
||||||
|
|
||||||
# Steps to get mse value
|
# Steps to get mse value
|
||||||
|
with open(inputfile) as file:
|
||||||
|
for line in file:
|
||||||
|
linelist = line.rstrip().split()
|
||||||
|
# NOTE stripping the last item because ssim has values like this in the location: (26.088579)
|
||||||
|
# For PSNR, psnr_v:87.80 is affected. (YUV color space). Not really a priority to fix atm
|
||||||
|
linedict = dict(kv.split(":") for kv in linelist[:-1])
|
||||||
|
lines.append(linedict)
|
||||||
|
|
||||||
|
return lines
|
||||||
|
|
||||||
|
|
||||||
def score_ssim(outputfile: str, inputfile: str):
|
def score_ssim(outputfile: str, inputfile: str):
|
||||||
@ -218,7 +218,51 @@ def score_ssim(outputfile: str, inputfile: str):
|
|||||||
|
|
||||||
ff.run()
|
ff.run()
|
||||||
|
|
||||||
# Steps to get ssim value
|
# get average ssim value
|
||||||
|
ssim: list[dict[str, Any]] = parse_kv_files("ssim.log")
|
||||||
|
|
||||||
|
# add all ssim_avg values together
|
||||||
|
ssim_tot: float = 0.0
|
||||||
|
for i in ssim:
|
||||||
|
ssim_tot += float(i["All"])
|
||||||
|
|
||||||
|
# get mse average
|
||||||
|
ssim_avg: float = ssim_tot / len(ssim)
|
||||||
|
|
||||||
|
return ssim_avg
|
||||||
|
|
||||||
|
|
||||||
|
def score_psnr(outputfile: str, inputfile: str) -> float:
|
||||||
|
"""
|
||||||
|
Calculate a file's MSE (mean-square error) using PSNR. A lower value is better
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
outputfile (str): Path to output file
|
||||||
|
inputfile (str): Path to input file
|
||||||
|
|
||||||
|
Return:
|
||||||
|
TBD
|
||||||
|
"""
|
||||||
|
ff = ffmpy.FFmpeg(
|
||||||
|
inputs=OrderedDict([(outputfile, None), (inputfile, None)]),
|
||||||
|
outputs={"-": "-lavfi psnr=stats_file=psnr.log -f null"},
|
||||||
|
# outputs={"-": "-filter_complex psnr=stats_file=psnr.log -f null"},
|
||||||
|
)
|
||||||
|
|
||||||
|
ff.run()
|
||||||
|
|
||||||
|
# get average mse value
|
||||||
|
psnr: list[dict[str, Any]] = parse_kv_files("psnr.log")
|
||||||
|
|
||||||
|
# add all mse_avg values together
|
||||||
|
mse_tot: float = 0.0
|
||||||
|
for i in psnr:
|
||||||
|
mse_tot += float(i["mse_avg"])
|
||||||
|
|
||||||
|
# get mse average
|
||||||
|
mse_avg: float = mse_tot / len(psnr)
|
||||||
|
|
||||||
|
return mse_avg
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@ -239,6 +283,8 @@ if __name__ == "__main__":
|
|||||||
"Encode time (s)",
|
"Encode time (s)",
|
||||||
"VMAF Score (mean)",
|
"VMAF Score (mean)",
|
||||||
"VMAF Score (min)",
|
"VMAF Score (min)",
|
||||||
|
"SSIM Score",
|
||||||
|
"MSE Score",
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -287,6 +333,10 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
vmaf = score_vmaf(outputfile=outputfile, inputfile=inputfile)
|
vmaf = score_vmaf(outputfile=outputfile, inputfile=inputfile)
|
||||||
|
|
||||||
|
ssim = score_ssim(outputfile=outputfile, inputfile=inputfile)
|
||||||
|
|
||||||
|
mse = score_psnr(outputfile=outputfile, inputfile=inputfile)
|
||||||
|
|
||||||
write_line(
|
write_line(
|
||||||
codec=codec,
|
codec=codec,
|
||||||
crf=crf,
|
crf=crf,
|
||||||
@ -296,6 +346,8 @@ if __name__ == "__main__":
|
|||||||
enctime=difftime,
|
enctime=difftime,
|
||||||
vmafmean=vmaf["mean"],
|
vmafmean=vmaf["mean"],
|
||||||
vmafmin=vmaf["min"],
|
vmafmin=vmaf["min"],
|
||||||
|
ssim=ssim,
|
||||||
|
mse=mse,
|
||||||
)
|
)
|
||||||
|
|
||||||
os.remove(outputfile)
|
os.remove(outputfile)
|
||||||
|
Loading…
Reference in New Issue
Block a user