llama.cpp/examples/main/main.cpp

676 lines
27 KiB
C++
Raw Permalink Normal View History

// Defines sigaction on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "llama.h"
#include "build-info.h"
2023-03-10 19:40:58 +01:00
#include <cassert>
#include <cinttypes>
2023-03-10 19:40:58 +01:00
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
2023-03-10 19:40:58 +01:00
#include <fstream>
#include <iostream>
2023-03-10 19:40:58 +01:00
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static console_state con_st;
static llama_context ** g_ctx;
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting=true;
} else {
console_cleanup(con_st);
printf("\n");
llama_print_timings(*g_ctx);
_exit(130);
}
}
}
#endif
2023-03-10 19:40:58 +01:00
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
// save choice to use color for later
// (note for later: this is a slightly awkward choice)
con_st.use_color = params.use_color;
con_st.multiline_input = params.multiline_input;
console_init(con_st);
atexit([]() { console_cleanup(con_st); });
if (params.perplexity) {
printf("\n************\n");
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.embedding) {
printf("\n************\n");
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
} else if (params.n_ctx < 8) {
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
2023-03-10 19:40:58 +01:00
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) {
2023-03-10 19:40:58 +01:00
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
2023-03-10 19:40:58 +01:00
std::mt19937 rng(params.seed);
if (params.random_prompt) {
2023-03-10 19:40:58 +01:00
params.prompt = gpt_random_prompt(rng);
}
llama_init_backend(params.numa);
llama_model * model;
llama_context * ctx;
g_ctx = &ctx;
2023-03-10 19:40:58 +01:00
// load the model and apply lora adapter, if any
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
2023-04-17 17:28:55 +02:00
}
2023-03-13 18:15:08 +01:00
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
// uncomment the "used_mem" line in llama.cpp to see the results
if (params.mem_test) {
{
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
}
{
const std::vector<llama_token> tmp = { 0, };
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
return 0;
}
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// export the cgraph and exit
if (params.export_cgraph) {
llama_eval_export(ctx, "llama.ggml");
llama_free(ctx);
llama_free_model(model);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
return 0;
}
std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens;
if (!path_session.empty()) {
fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
// fopen to check for existing session
FILE * fp = std::fopen(path_session.c_str(), "rb");
if (fp != NULL) {
std::fclose(fp);
session_tokens.resize(params.n_ctx);
size_t n_token_count_out = 0;
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
llama_set_rng_seed(ctx, params.seed);
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
} else {
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
}
}
2023-03-10 19:40:58 +01:00
// tokenize the prompt
std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
} else {
embd_inp = session_tokens;
}
2023-03-10 19:40:58 +01:00
const int n_ctx = llama_n_ctx(ctx);
if ((int) embd_inp.size() > n_ctx - 4) {
fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (session_tokens.size()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) {
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
}
// if we will use the cache for the full prompt without reaching the end of the cache, force
// reevaluation of the last token token to recalculate the cached logits
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
session_tokens.size() > embd_inp.size()) {
session_tokens.resize(embd_inp.size() - 1);
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
params.n_keep = (int)embd_inp.size();
}
2023-03-10 19:40:58 +01:00
// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_first = true;
params.antiprompt.push_back("### Instruction:\n\n");
}
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
Replace EOS with newline to prevent context/memory being flushed by EOS in interactive mode (#333) * Improve interactive mode's coherence after EOS Aims to improve coherence and ability to resume the interactive session when the user is given input back after an end of text token is reached. Not sure what token 13 is or why it seems to help. See conversation for examples. * Make newline token a constant * dynamically determine newline token * relocate previous newline token const * cleanup whitespace * print a new line on end of text in interactive this may need to be looked into further when not using a reverse prompt * only print manual newline with reverse prompt fix formatting of reverse prompts so they don't end up at the end of the current line while not introducing unnecessary new lines otherwise * alternate approach to replace end of text tokens * Inject the reverse prompt again after eos in interactive mode * tokenize reverse prompt when needed makes this PR compatible with https://github.com/ggerganov/llama.cpp/pull/330 * tokenize and inject only first reverse prompt thanks to tjohnman * tokenize first reverse prompt once * add newline token * add newline token * tokenize/inject reverse prompt for refactor this doesn't seem right though * tokenize nothing for antiprompt if no reverse * Update main.cpp * Update main.cpp * tokenize and inject reverse prompt as needed this doesn't seem to work if the reverse prompt is tokenized outside earlier on * not needed * remove newline token * remove newline token * tokenize newline token * add space to comment * Update main.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Slaren <2141330+slaren@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-23 21:22:47 +01:00
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
if (params.n_keep > 0) {
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "'\n");
}
fprintf(stderr, "\n");
2023-03-10 19:40:58 +01:00
}
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
2023-03-13 18:15:08 +01:00
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
fprintf(stderr, "%s: interactive mode on.\n", __func__);
if (params.antiprompt.size()) {
for (auto antiprompt : params.antiprompt) {
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
}
}
if (!params.input_prefix.empty()) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
if (!params.input_suffix.empty()) {
fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
fprintf(stderr, "\n\n");
2023-03-10 19:40:58 +01:00
// TODO: replace with ring-buffer
std::vector<llama_token> last_n_tokens(n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
if (params.interactive) {
const char *control_message;
if (con_st.multiline_input) {
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMa.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
fprintf(stderr, "== Running in interactive mode. ==\n"
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
" - Press Ctrl+C to interject at any time.\n"
#endif
"%s\n", control_message);
is_interacting = params.interactive_first;
}
bool is_antiprompt = false;
bool input_echo = true;
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
// the first thing we will do is to output the prompt, so set color accordingly
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
std::vector<llama_token> embd;
// do one empty run to warm up the model
{
const std::vector<llama_token> tmp = { llama_token_bos(), };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(ctx);
}
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
2023-03-10 19:40:58 +01:00
// predict
if (embd.size() > 0) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
auto max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int)embd.size() > max_embd_size) {
auto skipped_tokens = embd.size() - max_embd_size;
console_set_color(con_st, CONSOLE_COLOR_ERROR);
2023-06-17 19:24:11 +02:00
printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
fflush(stdout);
embd.resize(max_embd_size);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() > n_ctx) {
const int n_left = n_past - params.n_keep;
// always keep the first token - BOS
n_past = std::max(1, params.n_keep);
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
// stop saving session if we run out of context
path_session.clear();
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i]));
//}
//printf("'\n");
//printf("\n---\n");
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
++i;
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
2023-03-10 19:40:58 +01:00
}
if (embd.size() > 0 && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
2023-03-10 19:40:58 +01:00
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
2023-03-10 19:40:58 +01:00
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
need_to_save_session = false;
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_token id = 0;
2023-03-10 19:40:58 +01:00
{
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
2023-03-10 19:40:58 +01:00
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Apply penalties
float nl_logit = logits[llama_token_nl()];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
logits[llama_token_nl()] = nl_logit;
}
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token(ctx, &candidates_p);
}
}
// printf("`%d`", candidates_p.size);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
2023-03-10 19:40:58 +01:00
}
Replace EOS with newline to prevent context/memory being flushed by EOS in interactive mode (#333) * Improve interactive mode's coherence after EOS Aims to improve coherence and ability to resume the interactive session when the user is given input back after an end of text token is reached. Not sure what token 13 is or why it seems to help. See conversation for examples. * Make newline token a constant * dynamically determine newline token * relocate previous newline token const * cleanup whitespace * print a new line on end of text in interactive this may need to be looked into further when not using a reverse prompt * only print manual newline with reverse prompt fix formatting of reverse prompts so they don't end up at the end of the current line while not introducing unnecessary new lines otherwise * alternate approach to replace end of text tokens * Inject the reverse prompt again after eos in interactive mode * tokenize reverse prompt when needed makes this PR compatible with https://github.com/ggerganov/llama.cpp/pull/330 * tokenize and inject only first reverse prompt thanks to tjohnman * tokenize first reverse prompt once * add newline token * add newline token * tokenize/inject reverse prompt for refactor this doesn't seem right though * tokenize nothing for antiprompt if no reverse * Update main.cpp * Update main.cpp * tokenize and inject reverse prompt as needed this doesn't seem to work if the reverse prompt is tokenized outside earlier on * not needed * remove newline token * remove newline token * tokenize newline token * add space to comment * Update main.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Slaren <2141330+slaren@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-23 21:22:47 +01:00
// replace end of text token with newline token when in interactive mode
if (id == llama_token_eos() && params.interactive && !params.instruct) {
Replace EOS with newline to prevent context/memory being flushed by EOS in interactive mode (#333) * Improve interactive mode's coherence after EOS Aims to improve coherence and ability to resume the interactive session when the user is given input back after an end of text token is reached. Not sure what token 13 is or why it seems to help. See conversation for examples. * Make newline token a constant * dynamically determine newline token * relocate previous newline token const * cleanup whitespace * print a new line on end of text in interactive this may need to be looked into further when not using a reverse prompt * only print manual newline with reverse prompt fix formatting of reverse prompts so they don't end up at the end of the current line while not introducing unnecessary new lines otherwise * alternate approach to replace end of text tokens * Inject the reverse prompt again after eos in interactive mode * tokenize reverse prompt when needed makes this PR compatible with https://github.com/ggerganov/llama.cpp/pull/330 * tokenize and inject only first reverse prompt thanks to tjohnman * tokenize first reverse prompt once * add newline token * add newline token * tokenize/inject reverse prompt for refactor this doesn't seem right though * tokenize nothing for antiprompt if no reverse * Update main.cpp * Update main.cpp * tokenize and inject reverse prompt as needed this doesn't seem to work if the reverse prompt is tokenized outside earlier on * not needed * remove newline token * remove newline token * tokenize newline token * add space to comment * Update main.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Slaren <2141330+slaren@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-23 21:22:47 +01:00
id = llama_token_newline.front();
if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
}
}
2023-03-10 19:40:58 +01:00
// add it to the context
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
2023-03-10 19:40:58 +01:00
} else {
// some user input remains from prompt or interaction, forward it to processing
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
2023-03-19 18:46:32 +01:00
if ((int) embd.size() >= params.n_batch) {
2023-03-10 19:40:58 +01:00
break;
}
}
}
// display text
if (input_echo) {
for (auto id : embd) {
printf("%s", llama_token_to_str(ctx, id));
}
fflush(stdout);
}
// reset color to default if we there is no pending user input
if (input_echo && (int)embd_inp.size() == n_consumed) {
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// check for reverse prompt
if (params.antiprompt.size()) {
std::string last_output;
for (auto id : last_n_tokens) {
last_output += llama_token_to_str(ctx, id);
}
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
// so we'll compensate for that by widening the search window a bit.
for (std::string & antiprompt : params.antiprompt) {
size_t extra_padding = params.interactive ? 0 : 2;
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
: 0;
if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
if (params.interactive) {
is_interacting = true;
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
}
is_antiprompt = true;
fflush(stdout);
break;
}
}
}
if (n_past > 0 && is_interacting) {
if (params.instruct) {
printf("\n> ");
}
std::string buffer;
if (!params.input_prefix.empty()) {
buffer += params.input_prefix;
printf("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
another_line = console_readline(con_st, line);
buffer += line;
} while (another_line);
// done taking input, reset color
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
buffer += params.input_suffix;
printf("%s", params.input_suffix.c_str());
}
2023-03-13 00:35:51 +01:00
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
auto line_inp = ::llama_tokenize(ctx, buffer, false);
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
// instruct mode: insert response suffix
if (params.instruct) {
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
n_remain -= line_inp.size();
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
is_interacting = false;
}
2023-03-10 19:40:58 +01:00
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos()) {
if (params.instruct) {
is_interacting = true;
} else {
fprintf(stderr, " [end of text]\n");
break;
}
2023-03-10 19:40:58 +01:00
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
n_remain = params.n_predict;
is_interacting = true;
}
2023-03-10 19:40:58 +01:00
}
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
2023-03-10 19:40:58 +01:00
return 0;
}