2023-08-11 19:17:25 -04:00
## Convert llama2.c model to ggml
This example reads weights from project [llama2.c ](https://github.com/karpathy/llama2.c ) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
To convert the model first download the models from the [llma2.c ](https://github.com/karpathy/llama2.c ) repository:
`$ make -j`
After successful compilation, following usage options are available:
```
usage: ./convert-llama2c-to-ggml [options]
options:
-h, --help show this help message and exit
2023-08-23 20:33:05 +01:00
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin')
2023-08-11 19:17:25 -04:00
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
```
2023-08-23 20:33:05 +01:00
An example command using a model from [karpathy/tinyllamas ](https://huggingface.co/karpathy/tinyllamas ) is as follows:
2023-08-11 19:17:25 -04:00
2023-08-23 20:33:05 +01:00
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin`
2023-08-11 19:17:25 -04:00
2023-08-23 20:33:05 +01:00
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
2023-08-11 19:17:25 -04:00
2023-08-23 20:33:05 +01:00
`$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin`
Now you can use the model with a command like:
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`