2024-02-24 12:28:55 +01:00
|
|
|
@llama.cpp
|
2024-03-02 22:00:14 +01:00
|
|
|
@server
|
2024-02-24 12:28:55 +01:00
|
|
|
Feature: llama.cpp server
|
|
|
|
|
|
|
|
Background: Server startup
|
|
|
|
Given a server listening on localhost:8080
|
2024-03-23 18:07:00 +01:00
|
|
|
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
|
|
|
And a model file test-model.gguf
|
2024-02-24 12:28:55 +01:00
|
|
|
And a model alias tinyllama-2
|
|
|
|
And 42 as server seed
|
|
|
|
# KV Cache corresponds to the total amount of tokens
|
|
|
|
# that can be stored across all independent sequences: #4130
|
|
|
|
# see --ctx-size and #5568
|
2024-03-09 10:30:04 +01:00
|
|
|
And 256 KV cache size
|
|
|
|
And 32 as batch size
|
|
|
|
And 2 slots
|
|
|
|
And 64 server max tokens to predict
|
2024-02-25 13:49:43 +01:00
|
|
|
And prometheus compatible metrics exposed
|
2024-02-24 12:28:55 +01:00
|
|
|
Then the server is starting
|
|
|
|
Then the server is healthy
|
|
|
|
|
|
|
|
Scenario: Health
|
|
|
|
Then the server is ready
|
|
|
|
And all slots are idle
|
|
|
|
|
2024-03-09 10:30:04 +01:00
|
|
|
|
2024-02-24 12:28:55 +01:00
|
|
|
Scenario Outline: Completion
|
|
|
|
Given a prompt <prompt>
|
|
|
|
And <n_predict> max tokens to predict
|
|
|
|
And a completion request with no api error
|
|
|
|
Then <n_predicted> tokens are predicted matching <re_content>
|
2024-03-09 10:30:04 +01:00
|
|
|
And the completion is <truncated> truncated
|
|
|
|
And <n_prompt> prompt tokens are processed
|
2024-02-25 13:49:43 +01:00
|
|
|
And prometheus metrics are exposed
|
2024-03-08 12:25:04 +01:00
|
|
|
And metric llamacpp:tokens_predicted is <n_predicted>
|
2024-02-24 12:28:55 +01:00
|
|
|
|
|
|
|
Examples: Prompts
|
2024-03-20 06:33:49 +01:00
|
|
|
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
|
|
|
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
|
|
|
|
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
|
2024-03-09 10:30:04 +01:00
|
|
|
|
|
|
|
Scenario: Completion prompt truncated
|
|
|
|
Given a prompt:
|
|
|
|
"""
|
|
|
|
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
|
|
|
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
|
|
|
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
|
|
|
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
|
|
|
"""
|
|
|
|
And a completion request with no api error
|
2024-03-20 06:33:49 +01:00
|
|
|
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
|
2024-03-09 10:30:04 +01:00
|
|
|
And the completion is truncated
|
|
|
|
And 109 prompt tokens are processed
|
|
|
|
|
2024-02-24 12:28:55 +01:00
|
|
|
|
|
|
|
Scenario Outline: OAI Compatibility
|
|
|
|
Given a model <model>
|
|
|
|
And a system prompt <system_prompt>
|
|
|
|
And a user prompt <user_prompt>
|
|
|
|
And <max_tokens> max tokens to predict
|
|
|
|
And streaming is <enable_streaming>
|
|
|
|
Given an OAI compatible chat completions request with no api error
|
|
|
|
Then <n_predicted> tokens are predicted matching <re_content>
|
2024-03-09 10:30:04 +01:00
|
|
|
And <n_prompt> prompt tokens are processed
|
|
|
|
And the completion is <truncated> truncated
|
2024-02-24 12:28:55 +01:00
|
|
|
|
|
|
|
Examples: Prompts
|
2024-03-20 06:33:49 +01:00
|
|
|
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
|
|
|
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
|
|
|
|
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
|
2024-03-09 10:30:04 +01:00
|
|
|
|
2024-02-24 12:28:55 +01:00
|
|
|
|
json-schema-to-grammar improvements (+ added to server) (#5978)
* json: fix arrays (disallow `[,1]`)
* json: support tuple types (`[number, string]`)
* json: support additionalProperties (`{[k: string]: [string,number][]}`)
* json: support required / optional properties
* json: add support for pattern
* json: resolve $ref (and support https schema urls)
* json: fix $ref resolution
* join: support union types (mostly for nullable types I think)
* json: support allOf + nested anyOf
* json: support any (`{}` or `{type: object}`)
* json: fix merge
* json: temp fix for escapes
* json: spaces in output and unrestricted output spaces
* json: add typings
* json:fix typo
* Create ts-type-to-grammar.sh
* json: fix _format_literal (json.dumps already escapes quotes)
* json: merge lit sequences and handle negatives
{"type": "string", "pattern": "^({\"question\": \"[^\"]+\", \"response\": \"[^\"]+\"}\\n)+$"}
* json: handle pattern repetitions
* Update json-schema-to-grammar.mjs
* Create regex-to-grammar.py
* json: extract repeated regexp patterns to subrule
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* json: handle schema from pydantic Optional fields
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update ts-type-to-grammar.sh
* Update ts-type-to-grammar.sh
* json: simplify nullable fields handling
* json: accept duplicate identical rules
* json: revert space to 1 at most
* json: reuse regexp pattern subrules
* json: handle uuid string format
* json: fix literal escapes
* json: add --allow-fetch
* json: simplify range escapes
* json: support negative ranges in patterns
* Delete commit.txt
* json: custom regex parser, adds dot support & JS-portable
* json: rm trailing spaces
* Update json-schema-to-grammar.mjs
* json: updated server & chat `( cd examples/server && ./deps.sh )`
* json: port fixes from mjs to python
* Update ts-type-to-grammar.sh
* json: support prefixItems alongside array items
* json: add date format + fix uuid
* json: add date, time, date-time formats
* json: preserve order of props from TS defs
* json: port schema converter to C++, wire in ./server
* json: nits
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* json: fix mjs implementation + align outputs
* Update json-schema-to-grammar.mjs.hpp
* json: test C++, JS & Python versions
* json: nits + regen deps
* json: cleanup test
* json: revert from c++17 to 11
* json: nit fixes
* json: dirty include for test
* json: fix zig build
* json: pass static command to std::system in tests (fixed temp files)
* json: fix top-level $refs
* json: don't use c++20 designated initializers
* nit
* json: basic support for reserved names `{number:{number:{root:number}}}`
* Revamp test cmake to allow args (WORKING_DIRECTORY needed for JSON test)
* json: re-ran server deps.sh
* json: simplify test
* json: support mix of additional props & required/optional
* json: add tests for some expected failures
* json: fix type=const in c++, add failure expectations for non-str const&enum
* json: test (& simplify output of) empty schema
* json: check parsing in test + fix value & string refs
* json: add server tests for OAI JSON response_format
* json: test/fix top-level anyOf
* json: improve grammar parsing failures
* json: test/fix additional props corner cases
* json: fix string patterns (was missing quotes)
* json: ws nit
* json: fix json handling in server when there's no response_format
* json: catch schema conversion errors in server
* json: don't complain about unknown format type in server if unset
* json: cleaner build of test
* json: create examples/json-schema-pydantic-example.py
* json: fix date pattern
* json: move json.hpp & json-schema-to-grammar.{cpp,h} to common
* json: indent 4 spaces
* json: fix naming of top-level c++ function (+ drop unused one)
* json: avoid using namespace std
* json: fix zig build
* Update server.feature
* json: iostream -> fprintf
* json: space before & refs for consistency
* json: nits
2024-03-21 12:50:43 +01:00
|
|
|
Scenario Outline: OAI Compatibility w/ response format
|
|
|
|
Given a model test
|
|
|
|
And a system prompt test
|
|
|
|
And a user prompt test
|
|
|
|
And a response format <response_format>
|
|
|
|
And 10 max tokens to predict
|
|
|
|
Given an OAI compatible chat completions request with no api error
|
|
|
|
Then <n_predicted> tokens are predicted matching <re_content>
|
|
|
|
|
|
|
|
Examples: Prompts
|
|
|
|
| response_format | n_predicted | re_content |
|
|
|
|
| {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" |
|
|
|
|
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
|
|
|
|
| {"type": "json_object"} | 10 | \{ " Jacky. |
|
|
|
|
|
|
|
|
|
2024-02-24 12:28:55 +01:00
|
|
|
Scenario: Tokenize / Detokenize
|
|
|
|
When tokenizing:
|
|
|
|
"""
|
|
|
|
What is the capital of France ?
|
|
|
|
"""
|
|
|
|
Then tokens can be detokenize
|
2024-03-02 22:00:14 +01:00
|
|
|
|
|
|
|
Scenario: Models available
|
|
|
|
Given available models
|
|
|
|
Then 1 models are supported
|
|
|
|
Then model 0 is identified by tinyllama-2
|
|
|
|
Then model 0 is trained on 128 tokens context
|