llama.cpp/ggml-metal.m

2626 lines
144 KiB
Mathematica
Raw Normal View History

llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#import "ggml-metal.h"
#import "ggml-backend-impl.h"
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#import "ggml.h"
#import <Foundation/Foundation.h>
#import <Metal/Metal.h>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#ifdef GGML_METAL_NDEBUG
#define GGML_METAL_LOG_INFO(...)
#define GGML_METAL_LOG_WARN(...)
#define GGML_METAL_LOG_ERROR(...)
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#else
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#endif
#define UNUSED(x) (void)(x)
#define GGML_METAL_MAX_KERNELS 256
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
struct ggml_metal_buffer {
const char * name;
void * data;
size_t size;
id<MTLBuffer> metal;
};
struct ggml_metal_kernel {
id<MTLFunction> function;
id<MTLComputePipelineState> pipeline;
};
enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_ADD,
GGML_METAL_KERNEL_TYPE_ADD_ROW,
GGML_METAL_KERNEL_TYPE_MUL,
GGML_METAL_KERNEL_TYPE_MUL_ROW,
GGML_METAL_KERNEL_TYPE_DIV,
GGML_METAL_KERNEL_TYPE_DIV_ROW,
GGML_METAL_KERNEL_TYPE_SCALE,
GGML_METAL_KERNEL_TYPE_SCALE_4,
GGML_METAL_KERNEL_TYPE_TANH,
GGML_METAL_KERNEL_TYPE_RELU,
GGML_METAL_KERNEL_TYPE_GELU,
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_KERNEL_TYPE_SOFT_MAX,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
GGML_METAL_KERNEL_TYPE_RMS_NORM,
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
GGML_METAL_KERNEL_TYPE_NORM,
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
GGML_METAL_KERNEL_TYPE_ROPE_F32,
GGML_METAL_KERNEL_TYPE_ROPE_F16,
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
//GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
//GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
GGML_METAL_KERNEL_TYPE_CONCAT,
GGML_METAL_KERNEL_TYPE_SQR,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_COUNT
};
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
struct ggml_metal_context {
int n_cb;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
id<MTLDevice> device;
id<MTLCommandQueue> queue;
id<MTLLibrary> library;
dispatch_queue_t d_queue;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
int n_buffers;
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
struct ggml_metal_kernel kernels[GGML_METAL_MAX_KERNELS];
bool support_simdgroup_reduction;
bool support_simdgroup_mm;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
};
// MSL code
// TODO: move the contents here when ready
// for now it is easier to work in a separate file
//static NSString * const msl_library_source = @"see metal.metal";
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@end
@implementation GGMLMetalClass
@end
static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
fprintf(stderr, "%s", msg);
UNUSED(level);
UNUSED(user_data);
}
ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
void * ggml_metal_log_user_data = NULL;
GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
if (ggml_metal_log_callback != NULL) {
va_list args;
va_start(args, format);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
} else {
char* buffer2 = malloc(len+1);
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
va_end(args);
va_start(args, format);
vsnprintf(buffer2, len+1, format, args);
buffer2[len] = 0;
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
free(buffer2);
}
va_end(args);
}
}
2024-01-13 19:45:45 +01:00
static void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
return NULL;
}
return data;
}
static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
id<MTLDevice> device;
NSString * s;
#if TARGET_OS_OSX
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
for (device in devices) {
s = [device name];
GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]);
}
#endif
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// Pick and show default Metal device
device = MTLCreateSystemDefaultDevice();
s = [device name];
GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]);
// Configure context
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
ctx->device = device;
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
ctx->queue = [ctx->device newCommandQueue];
ctx->n_buffers = 0;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// load library
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
{
NSBundle * bundle = nil;
#ifdef SWIFT_PACKAGE
bundle = SWIFTPM_MODULE_BUNDLE;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#else
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
NSError * error = nil;
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
if (libPath != nil) {
// pre-compiled library found
NSURL * libURL = [NSURL fileURLWithPath:libPath];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
} else {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
NSString * sourcePath;
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, ggmlMetalPathResources ? [ggmlMetalPathResources UTF8String] : "nil");
if (ggmlMetalPathResources) {
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
} else {
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
}
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
@autoreleasepool {
// dictionary of preprocessor macros
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
k-quants : support for super-block size of 64 (#2001) * k_quants: WIP super-blocks with 64 weights * k_quants: WIP super-blocks with 64 weights Q6_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q4_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower than the scalar implementation) * k_quants: WIP super-blocks with 64 weights Q3_K scalar and AVX2 works. * k_quants: WIP super-blocks with 64 weights Q5_K scalar and AVX2 works, and with that all k_quants are done on AVX2 and scalar * k_quants: WIP super-blocks with 64 weights Q6_K working on CUDA. Cannot make it run quite as gast as with super-blocks with 256 weigths: 8% slower on 4080, 20% slower on the 1660 (but there we fit 1 less layer on the GPU because pf the larger model size), so some fraction of these 20% is due to that, * k_quants: WIP super-blocks with 64 weights Q4_K working on CUDA. ~10% slower on GTX-1660, 16% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q2_K working on CUDA. ~3% slower on GTX-1660, 10% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q3_K working on CUDA. * k_quants: WIP super-blocks with 64 weights Q5_K working on CUDA, and with this CUDA is done. * k_quants: WIP super-blocks with 64 weights Q6_K working on ARM_NEON * k_quants: WIP super-blocks with 64 weights Q4_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q2_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q3_K working on ARM_NEON, but quite a bit slower than 256 weights. * k_quants: WIP super-blocks with 64 weights Q5_K working on ARM_NEON, but quite a bit slower than 256 weights. With that, we have full support for ARM_NEON, although performance is not quite there. * k_quants: WIP super-blocks with 64 weights Slightly more efficient Q3_K and Q5_K * k_quants: WIP super-blocks with 64 weights Another small improvement for Q3_K and Q5_K on ARM_NEON * k_quants: WIP super-blocks with 64 weights Yet another speedup for Q5_K on ARM_NEON. We are now within 10% of the QK_K = 256 version. * k_quants: WIP super-blocks with 64 weights * We are able to pass preprocessor macros to the Metal compiler * Q6_K works and is actually slightly more efficient than the QK_K = 256 version (25.2 ms vs 25.8 ms) * k_quants: WIP super-blocks with 64 weights Q4_K works on Metal and is actually slightly faster than QK_K = 256 (21.95 ms vs 24.0 ms). * k_quants: WIP super-blocks with 64 weights Q2_K works on Metal and is very slightly faster than QK_K = 256 (23.8 ms vs 24.2 ms). * k_quants: WIP super-blocks with 64 weights Q3_K works on Metal and is slightly faster than QK_K = 256 (26.6 ms vs 28.3 ms). * k_quants: WIP super-blocks with 64 weights Q5_K works on Metal and is slightly faster than QK_K = 256 (23.7 ms vs 26.3 ms). * k_quants: call them _K, not _k, also on Metal * k_quants: correctly define QK_K in llama.cpp * Fixed bug in q4_K quantization added with the 64-block addition * Simplify via lambda * k_quants: swicth Q3_K to 4-bit scales when QK_K = 64 Otherwise there isn't much benefit from this quantization type. There is some very slight loss in accuracy, but we reduce size by ~7%. E.g., for OpenLLaMA-3B, Q3_K_S perplexity is 8.6131 with 8-bit scales and 8.6352 with 4-bit, while file size decreases from 1.53G to 1.44G. * k_quants: switch Q4_K to 4-bit scales when QK_K = 64 Here the loss in accuracy is greater than for Q3_K, but the Q4_K points still move further to the left on the perplexity vs size curve. * k_quants: forgot to add the Metal changes in last commit * k_quants: change Q5_K to be type 0 when QK_K = 64 Still needs AVX2 implementation * k_quants: AVX2 implementation for new 64-weight Q5_K * k_quants: 10% faster ARM_NEON Q5_K dot product * k_quants: fixed issue caused by merging with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
#ifdef GGML_QKK_64
prep[@"QK_K"] = @(64);
k-quants : support for super-block size of 64 (#2001) * k_quants: WIP super-blocks with 64 weights * k_quants: WIP super-blocks with 64 weights Q6_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q4_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower than the scalar implementation) * k_quants: WIP super-blocks with 64 weights Q3_K scalar and AVX2 works. * k_quants: WIP super-blocks with 64 weights Q5_K scalar and AVX2 works, and with that all k_quants are done on AVX2 and scalar * k_quants: WIP super-blocks with 64 weights Q6_K working on CUDA. Cannot make it run quite as gast as with super-blocks with 256 weigths: 8% slower on 4080, 20% slower on the 1660 (but there we fit 1 less layer on the GPU because pf the larger model size), so some fraction of these 20% is due to that, * k_quants: WIP super-blocks with 64 weights Q4_K working on CUDA. ~10% slower on GTX-1660, 16% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q2_K working on CUDA. ~3% slower on GTX-1660, 10% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q3_K working on CUDA. * k_quants: WIP super-blocks with 64 weights Q5_K working on CUDA, and with this CUDA is done. * k_quants: WIP super-blocks with 64 weights Q6_K working on ARM_NEON * k_quants: WIP super-blocks with 64 weights Q4_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q2_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q3_K working on ARM_NEON, but quite a bit slower than 256 weights. * k_quants: WIP super-blocks with 64 weights Q5_K working on ARM_NEON, but quite a bit slower than 256 weights. With that, we have full support for ARM_NEON, although performance is not quite there. * k_quants: WIP super-blocks with 64 weights Slightly more efficient Q3_K and Q5_K * k_quants: WIP super-blocks with 64 weights Another small improvement for Q3_K and Q5_K on ARM_NEON * k_quants: WIP super-blocks with 64 weights Yet another speedup for Q5_K on ARM_NEON. We are now within 10% of the QK_K = 256 version. * k_quants: WIP super-blocks with 64 weights * We are able to pass preprocessor macros to the Metal compiler * Q6_K works and is actually slightly more efficient than the QK_K = 256 version (25.2 ms vs 25.8 ms) * k_quants: WIP super-blocks with 64 weights Q4_K works on Metal and is actually slightly faster than QK_K = 256 (21.95 ms vs 24.0 ms). * k_quants: WIP super-blocks with 64 weights Q2_K works on Metal and is very slightly faster than QK_K = 256 (23.8 ms vs 24.2 ms). * k_quants: WIP super-blocks with 64 weights Q3_K works on Metal and is slightly faster than QK_K = 256 (26.6 ms vs 28.3 ms). * k_quants: WIP super-blocks with 64 weights Q5_K works on Metal and is slightly faster than QK_K = 256 (23.7 ms vs 26.3 ms). * k_quants: call them _K, not _k, also on Metal * k_quants: correctly define QK_K in llama.cpp * Fixed bug in q4_K quantization added with the 64-block addition * Simplify via lambda * k_quants: swicth Q3_K to 4-bit scales when QK_K = 64 Otherwise there isn't much benefit from this quantization type. There is some very slight loss in accuracy, but we reduce size by ~7%. E.g., for OpenLLaMA-3B, Q3_K_S perplexity is 8.6131 with 8-bit scales and 8.6352 with 4-bit, while file size decreases from 1.53G to 1.44G. * k_quants: switch Q4_K to 4-bit scales when QK_K = 64 Here the loss in accuracy is greater than for Q3_K, but the Q4_K points still move further to the left on the perplexity vs size curve. * k_quants: forgot to add the Metal changes in last commit * k_quants: change Q5_K to be type 0 when QK_K = 64 Still needs AVX2 implementation * k_quants: AVX2 implementation for new 64-weight Q5_K * k_quants: 10% faster ARM_NEON Q5_K dot product * k_quants: fixed issue caused by merging with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
#endif
MTLCompileOptions* options = [MTLCompileOptions new];
options.preprocessorMacros = prep;
//[options setFastMathEnabled:false];
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
}
}
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
}
}
// print MTL GPU family:
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
const NSInteger MTLGPUFamilyMetal3 = 5001;
// determine max supported GPU family
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
{
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
break;
}
}
for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
break;
}
}
for (int i = MTLGPUFamilyMetal3 + 5; i >= MTLGPUFamilyMetal3; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3 + 3, i);
break;
}
}
}
ctx->support_simdgroup_reduction = [ctx->device supportsFamily:MTLGPUFamilyApple7];
ctx->support_simdgroup_reduction |= [ctx->device supportsFamily:MTLGPUFamilyMetal3];
ctx->support_simdgroup_mm = [ctx->device supportsFamily:MTLGPUFamilyApple7];
GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false");
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
if (@available(macOS 10.12, iOS 16.0, *)) {
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
}
#elif TARGET_OS_OSX
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
} else {
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
}
#endif
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// load kernels
{
NSError * error = nil;
llama : refactor graph build code (#3837) * llama : factor out ggml-alloc from graph graph build functions ggml-ci * metal : disable kernel load log * llama : factor out tensor offloading outside the build call (wip) ggml-ci * llama : offload rest of the models ggml-ci * llama : update offload log messages to print node index * llama : comments * llama : support offloading result_norm + comments * llama : factor graph input into a function * llama : do tensor offload only with CUDA * llama : fix res_norm offloading * llama : try to optimize offloading code * llama : fix non-CUDA build * llama : try to fix build * llama : move refact in correct place + optimize graph input * llama : refactor tensor offloading as callback * llama : add layer index to all tensor names * llama : add functional header * llama : comment ggml-ci * llama : remove obsolete map for layer counting * llama : add llm_build helper functions (#3848) * llama : add llm_build_norm helper function ggml-ci * llama : add llm_build_ffn helper function (#3849) ggml-ci * llama : add llm_build_k_shift helper ggml-ci * llama : fix offloading after recent changes * llama : add llm_build_kv_store helper ggml-ci * llama : remove obsolete offload names * llama : fix llm_build_k_shift to use n_head_kv instead of n_head * llama : simplify falcon Q, K, V computation * llama : remove obsolete comments in build graphs * llama : add llm_build_kqv helper ggml-ci * llama : minor * llama : add LLAMA_OFFLOAD_DEBUG + fix starcoder offloading * llama : fix input allocation logic * llama : update offload functions for KQ tensors * llama : normalize tensor names ggml-ci * llama : enable warning about not offloaded tensors * llama : remove extra ; + deduplicate gate_b logic * llama : add llm_build_inp_embd helper
2023-11-01 07:04:02 +01:00
for (int i = 0; i < GGML_METAL_MAX_KERNELS; ++i) {
ctx->kernels[i].function = nil;
ctx->kernels[i].pipeline = nil;
}
llama : refactor graph build code (#3837) * llama : factor out ggml-alloc from graph graph build functions ggml-ci * metal : disable kernel load log * llama : factor out tensor offloading outside the build call (wip) ggml-ci * llama : offload rest of the models ggml-ci * llama : update offload log messages to print node index * llama : comments * llama : support offloading result_norm + comments * llama : factor graph input into a function * llama : do tensor offload only with CUDA * llama : fix res_norm offloading * llama : try to optimize offloading code * llama : fix non-CUDA build * llama : try to fix build * llama : move refact in correct place + optimize graph input * llama : refactor tensor offloading as callback * llama : add layer index to all tensor names * llama : add functional header * llama : comment ggml-ci * llama : remove obsolete map for layer counting * llama : add llm_build helper functions (#3848) * llama : add llm_build_norm helper function ggml-ci * llama : add llm_build_ffn helper function (#3849) ggml-ci * llama : add llm_build_k_shift helper ggml-ci * llama : fix offloading after recent changes * llama : add llm_build_kv_store helper ggml-ci * llama : remove obsolete offload names * llama : fix llm_build_k_shift to use n_head_kv instead of n_head * llama : simplify falcon Q, K, V computation * llama : remove obsolete comments in build graphs * llama : add llm_build_kqv helper ggml-ci * llama : minor * llama : add LLAMA_OFFLOAD_DEBUG + fix starcoder offloading * llama : fix input allocation logic * llama : update offload functions for KQ tensors * llama : normalize tensor names ggml-ci * llama : enable warning about not offloaded tensors * llama : remove extra ; + deduplicate gate_b logic * llama : add llm_build_inp_embd helper
2023-11-01 07:04:02 +01:00
/*
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
(int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
(int) kernel->pipeline.threadExecutionWidth); \
llama : refactor graph build code (#3837) * llama : factor out ggml-alloc from graph graph build functions ggml-ci * metal : disable kernel load log * llama : factor out tensor offloading outside the build call (wip) ggml-ci * llama : offload rest of the models ggml-ci * llama : update offload log messages to print node index * llama : comments * llama : support offloading result_norm + comments * llama : factor graph input into a function * llama : do tensor offload only with CUDA * llama : fix res_norm offloading * llama : try to optimize offloading code * llama : fix non-CUDA build * llama : try to fix build * llama : move refact in correct place + optimize graph input * llama : refactor tensor offloading as callback * llama : add layer index to all tensor names * llama : add functional header * llama : comment ggml-ci * llama : remove obsolete map for layer counting * llama : add llm_build helper functions (#3848) * llama : add llm_build_norm helper function ggml-ci * llama : add llm_build_ffn helper function (#3849) ggml-ci * llama : add llm_build_k_shift helper ggml-ci * llama : fix offloading after recent changes * llama : add llm_build_kv_store helper ggml-ci * llama : remove obsolete offload names * llama : fix llm_build_k_shift to use n_head_kv instead of n_head * llama : simplify falcon Q, K, V computation * llama : remove obsolete comments in build graphs * llama : add llm_build_kqv helper ggml-ci * llama : minor * llama : add LLAMA_OFFLOAD_DEBUG + fix starcoder offloading * llama : fix input allocation logic * llama : update offload functions for KQ tensors * llama : normalize tensor names ggml-ci * llama : enable warning about not offloaded tensors * llama : remove extra ; + deduplicate gate_b logic * llama : add llm_build_inp_embd helper
2023-11-01 07:04:02 +01:00
*/
#define GGML_METAL_ADD_KERNEL(e, name, supported) \
if (supported) { \
struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
kernel->function = [ctx->library newFunctionWithName:@"kernel_"#name]; \
kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:kernel->function error:&error]; \
if (error) { \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
} \
} else { \
GGML_METAL_LOG_WARN("%s: skipping %-32s (not supported)\n", __func__, "kernel_"#name); \
}
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// simd_sum and simd_max requires MTLGPUFamilyApple7
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
}
return ctx;
}
2024-01-13 19:45:45 +01:00
static void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
for (int i = 0; i < ctx->n_buffers; ++i) {
[ctx->buffers[i].metal release];
}
for (int i = 0; i < GGML_METAL_MAX_KERNELS; ++i) {
if (ctx->kernels[i].pipeline) {
[ctx->kernels[i].pipeline release];
}
if (ctx->kernels[i].function) {
[ctx->kernels[i].function release];
}
}
[ctx->library release];
[ctx->queue release];
[ctx->device release];
dispatch_release(ctx->d_queue);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
free(ctx);
}
// temporarily defined here for compatibility between ggml-backend and the old API
struct ggml_backend_metal_buffer {
void * data;
size_t size;
id<MTLBuffer> metal;
};
struct ggml_backend_metal_buffer_context {
void * all_data;
size_t all_size;
bool owned;
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
int n_buffers;
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
};
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer
//
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
//GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
const int64_t tsize = ggml_nbytes(t);
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
// compatibility with ggml-backend
if (buffer && buffer->buft == ggml_backend_metal_buffer_type()) {
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
// find the view that contains the tensor fully
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
*offs = (size_t) ioffs;
//GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
return buf_ctx->buffers[i].metal;
}
}
GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
return nil;
}
// find the view that contains the tensor fully
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
*offs = (size_t) ioffs;
//GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
return ctx->buffers[i].metal;
}
}
GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
return nil;
}
static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
return true;
default:
return false;
}
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
case GGML_OP_CONCAT:
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SUM_ROWS:
return true;
case GGML_OP_SOFT_MAX:
case GGML_OP_RMS_NORM:
case GGML_OP_GROUP_NORM:
return ctx->support_simdgroup_reduction;
case GGML_OP_NORM:
case GGML_OP_ALIBI:
case GGML_OP_ROPE:
case GGML_OP_IM2COL:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
return true;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return ctx->support_simdgroup_reduction;
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_CONT:
{
switch (op->src[0]->type) {
case GGML_TYPE_F32:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
return true;
default:
return false;
}
case GGML_TYPE_F16:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
default:
return false;
};
}
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_GET_ROWS:
{
return op->ne[3] == 1;
}
default:
return false;
}
}
2024-01-13 19:45:45 +01:00
static bool ggml_metal_graph_compute(
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
@autoreleasepool {
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
2024-01-13 19:45:45 +01:00
edesc.dispatchType = MTLDispatchTypeSerial;
// create multiple command buffers and enqueue them
// then, we encode the graph into the command buffers in parallel
const int n_nodes = gf->n_nodes;
const int n_cb = ctx->n_cb;
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
id<MTLCommandBuffer> command_buffer_builder[n_cb];
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
command_buffer_builder[cb_idx] = command_buffer;
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// enqueue the command buffers in order to specify their execution order
[command_buffer enqueue];
}
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
const int cb_idx = iter;
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 18:04:36 +02:00
size_t offs_src0 = 0;
size_t offs_src1 = 0;
size_t offs_dst = 0;
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 18:04:36 +02:00
for (int i = node_start; i < node_end; ++i) {
if (i == -1) {
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
continue;
}
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
//GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
struct ggml_tensor * dst = gf->nodes[i];
switch (dst->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
{
// noop -> next node
} continue;
default:
{
} break;
}
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 18:04:36 +02:00
if (!ggml_metal_supports_op(ctx, dst)) {
GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op");
}
#ifndef GGML_METAL_NDEBUG
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
#endif
const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0;
const int64_t ne02 = src0 ? src0->ne[2] : 0;
const int64_t ne03 = src0 ? src0->ne[3] : 0;
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
const int64_t ne10 = src1 ? src1->ne[0] : 0;
const int64_t ne11 = src1 ? src1->ne[1] : 0;
const int64_t ne12 = src1 ? src1->ne[2] : 0;
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
const int64_t ne0 = dst ? dst->ne[0] : 0;
const int64_t ne1 = dst ? dst->ne[1] : 0;
const int64_t ne2 = dst ? dst->ne[2] : 0;
const int64_t ne3 = dst ? dst->ne[3] : 0;
const uint64_t nb0 = dst ? dst->nb[0] : 0;
const uint64_t nb1 = dst ? dst->nb[1] : 0;
const uint64_t nb2 = dst ? dst->nb[2] : 0;
const uint64_t nb3 = dst ? dst->nb[3] : 0;
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
//if (src0) {
// GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
// ggml_is_contiguous(src0), src0->name);
//}
//if (src1) {
// GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
// ggml_is_contiguous(src1), src1->name);
//}
//if (dst) {
// GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
// dst->name);
//}
switch (dst->op) {
case GGML_OP_CONCAT:
{
const int64_t nb = ne00;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ADD:
case GGML_OP_MUL:
case GGML_OP_DIV:
{
const size_t offs = 0;
bool bcast_row = false;
int64_t nb = ne00;
id<MTLComputePipelineState> pipeline = nil;
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
GGML_ASSERT(ne11 == 1);
nb = ne00 / 4;
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
default: GGML_ASSERT(false);
}
bcast_row = true;
} else {
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
default: GGML_ASSERT(false);
}
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
[encoder setBytes:&nb length:sizeof(nb) atIndex:28];
if (bcast_row) {
const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} else {
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
} break;
case GGML_OP_ACC:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(dstt == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
const size_t pnb1 = ((int32_t *) dst->op_params)[0];
const size_t pnb2 = ((int32_t *) dst->op_params)[1];
const size_t pnb3 = ((int32_t *) dst->op_params)[2];
const size_t offs = ((int32_t *) dst->op_params)[3];
const bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace) {
// run a separete kernel to cpy src->dst
// not sure how to avoid this
// TODO: make a simpler cpy_bytes kernel
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8];
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9];
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24];
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25];
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_SCALE:
{
GGML_ASSERT(ggml_is_contiguous(src0));
const float scale = *(const float *) dst->op_params;
int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
n /= 4;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline;
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_TANH:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_RELU:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_SILU:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
[encoder setComputePipelineState:pipeline];
llama : add Mixtral support (#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 13:04:25 +01:00
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
} break;
case GGML_OP_SQR:
{
GGML_ASSERT(ggml_is_contiguous(src0));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SUM_ROWS:
{
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SOFT_MAX:
{
int nth = 32; // SIMD width
id<MTLComputePipelineState> pipeline = nil;
if (ne00%4 == 0) {
while (nth < ne00/4 && nth < 256) {
nth *= 2;
}
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline;
} else {
while (nth < ne00 && nth < 1024) {
nth *= 2;
}
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline;
}
const float scale = ((float *) dst->op_params)[0];
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
if (id_src1) {
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_DIAG_MASK_INF:
{
const int n_past = ((int32_t *)(dst->op_params))[0];
id<MTLComputePipelineState> pipeline = nil;
if (ne00%8 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
2023-06-17 19:24:11 +02:00
if (ne00%8 == 0) {
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
else {
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
} break;
case GGML_OP_MUL_MAT:
{
GGML_ASSERT(ne00 == ne10);
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 18:04:36 +02:00
// TODO: assert that dim2 and dim3 are contiguous
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
2023-06-17 19:24:11 +02:00
const uint r2 = ne12/ne02;
const uint r3 = ne13/ne03;
2023-06-17 19:24:11 +02:00
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = 1;
#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// these numbers do not translate to other devices or model sizes
// TODO: need to find a better approach
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
switch (src0t) {
case GGML_TYPE_F16: ne11_mm_min = 2; break;
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
case GGML_TYPE_Q5_0: // not tested yet
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
default: ne11_mm_min = 1; break;
}
}
#endif
llm : add Falcon support (#2717) * llama : refactor GGUF constants into static maps * llama : check if model architecture is known * llama : refactor llama_model_load_internal() * gguf : add KV constant maps * llm : read arch-specific KVs * convert : add dummy scores + types * falcon : load tensor data (CPU only) * llama : fix loading progress bar * llama : add arch member to llama_model * falcon : CPU inference working * falcon : support non-40B models * falcon : minor * llama : minor updates ggml-ci * convert-falcon-hf-to-gguf.py : fix special token mapping * llama.cpp : llama default UNK token = id 0 * llama.cpp : fix bpe tokenizer * llama.cpp : fix the fix of bpe tokenizer * ggml : pass eps to ggml_norm * metal : implement RoPE (mode = 2) + avoid ggml_repeat * ggml : ggml_repeat always creates new tensor * falcon : copy-paste self-attention from LLaMA * metal : print extra compute pipeline info * falcon : minor changes (still chasing the Metal problem) * llama.cpp : fix linefeed token * metal : fix GELU kernel numerical stability by using precise::tanh * metal : temporary workaround for the concurrency optimization bug * falcon : add CUDA offloading (#2739) * llama : better model naming and size reporting * llama : prep new tokenizer support * llama : advanced BPE tokenizer based on ggllm.cpp imlpementation * llama : remove oboslete comment ggml-ci * common : remove obsolete BPE API + disable test-tokenizer-1 * llama : revert BPE special-case in llama_byte_to_token() * cuda : add TODOs for RoPE NeoX implementation * llama : default special tokens based on vocab type * perplexity : add log for start of tokenization --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com>
2023-08-23 22:08:04 +02:00
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
!ggml_is_transposed(src0) &&
!ggml_is_transposed(src1) &&
src1t == GGML_TYPE_F32 &&
ne00 % 32 == 0 && ne00 >= 64 &&
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
llama : add custom RoPE (#2054) * Implement customizable RoPE The original RoPE has pre-defined parameters theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2] Our customizable RoPE, ggml_rope_custom_inplace, uses theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2] with the default matches the original scale = 1.0 base = 10000 The new command line arguments --rope-freq-base --rope-freq-scale set the two new RoPE parameter. Recent researches show changing these two parameters extends the context limit with minimal loss. 1. Extending Context to 8K kaiokendev https://kaiokendev.github.io/til#extending-context-to-8k 2. Extending Context Window of Large Language Models via Positional Interpolation Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian https://arxiv.org/abs/2306.15595 3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/user/bloc97 https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ For the bold, try adding the following command line parameters to your favorite model: -c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5 * ggml-metal: fix custom rope * common: fix argument names in help * llama: increase MEM_REQ_EVAL for MODEL_3B It avoids crashing for quantized weights on CPU. Better ways to calculate the required buffer size would be better. * llama: make MEM_REQ_EVAL depend on n_ctx * server: use proper Content-Type in curl examples Without the header Content-Type: application/json, curl will POST with Content-Type: application/x-www-form-urlencoded Though our simple server doesn't care, the httplib.h used has a limit with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192 With Content-Type: application/json, we can send large json data. * style : minor fixes, mostly indentations * ggml : fix asserts --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 12:34:16 +02:00
id<MTLComputePipelineState> pipeline = nil;
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 18:04:36 +02:00
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break;
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break;
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
}
llama : custom attention mask + parallel decoding + no context swaps (#3228) * tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 18:04:36 +02:00
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
id<MTLComputePipelineState> pipeline = nil;
// use custom matrix x vector kernel
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
nrows = 4;
} break;
case GGML_TYPE_F16:
{
nth0 = 32;
nth1 = 1;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
nrows = ne11;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
nrows = 4;
}
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
nrows = 4;
}
} break;
case GGML_TYPE_Q4_0:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
} break;
case GGML_TYPE_Q4_1:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
} break;
case GGML_TYPE_Q5_0:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
} break;
case GGML_TYPE_Q5_1:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
} break;
case GGML_TYPE_Q8_0:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
} break;
case GGML_TYPE_Q3_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
} break;
case GGML_TYPE_Q4_K:
{
nth0 = 4; //1;
nth1 = 8; //32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
} break;
case GGML_TYPE_Q5_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
} break;
case GGML_TYPE_Q6_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XXS:
{
nth0 = 4;
nth1 = 16;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XS:
{
nth0 = 4;
nth1 = 16;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
} break;
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
GGML_ASSERT(false && "not implemented");
}
};
if (ggml_is_quantized(src0t)) {
GGML_ASSERT(ne00 >= nth0*nth1);
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
const int64_t ny = (ne11 + nrows - 1)/nrows;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
}
} break;
case GGML_OP_MUL_MAT_ID:
{
//GGML_ASSERT(ne00 == ne10);
//GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(src0t == GGML_TYPE_I32);
const int n_as = ((int32_t *) dst->op_params)[1];
// TODO: make this more general
GGML_ASSERT(n_as <= 8);
// max size of the src1ids array in the kernel stack
GGML_ASSERT(ne11 <= 512);
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
const int64_t ne20 = src2 ? src2->ne[0] : 0;
const int64_t ne21 = src2 ? src2->ne[1] : 0;
const int64_t ne22 = src2 ? src2->ne[2] : 0;
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
GGML_ASSERT(!ggml_is_transposed(src2));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(src1t == GGML_TYPE_F32);
const uint r2 = ne12/ne22;
const uint r3 = ne13/ne23;
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = n_as;
const int idx = ((int32_t *) dst->op_params)[0];
// batch size
GGML_ASSERT(ne01 == ne11);
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
// !!!
// TODO: for now, always use mat-vec kernels until we figure out how to improve the
// indirect matrix multiplication
// !!!
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
ne20 % 32 == 0 && ne20 >= 64 &&
ne11 > ne11_mm_min) {
id<MTLComputePipelineState> pipeline = nil;
switch (src2->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break;
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break;
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break;
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:16];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:17];
[encoder setBytes:&idx length:sizeof(idx) atIndex:18];
// TODO: how to make this an array? read Metal docs
for (int j = 0; j < 8; ++j) {
// NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];
size_t offs_src_cur = 0;
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
}
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
id<MTLComputePipelineState> pipeline = nil;
// use custom matrix x vector kernel
switch (src2t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nth0 = 32;
nth1 = 1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
} break;
case GGML_TYPE_Q4_0:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
} break;
case GGML_TYPE_Q4_1:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
} break;
case GGML_TYPE_Q5_0:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
} break;
case GGML_TYPE_Q5_1:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
} break;
case GGML_TYPE_Q8_0:
{
nth0 = 8;
nth1 = 8;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
} break;
case GGML_TYPE_Q3_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
} break;
case GGML_TYPE_Q4_K:
{
nth0 = 4; //1;
nth1 = 8; //32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
} break;
case GGML_TYPE_Q5_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
} break;
case GGML_TYPE_Q6_K:
{
nth0 = 2;
nth1 = 32;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XXS:
{
nth0 = 4;
nth1 = 16;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
} break;
case GGML_TYPE_IQ2_XS:
{
nth0 = 4;
nth1 = 16;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
} break;
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
GGML_ASSERT(false && "not implemented");
}
};
if (ggml_is_quantized(src2t)) {
GGML_ASSERT(ne20 >= nth0*nth1);
}
const int64_t _ne1 = 1; // kernels needs a reference in constant memory
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6];
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:20];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:21];
[encoder setBytes:&idx length:sizeof(idx) atIndex:22];
// TODO: how to make this an array? read Metal docs
for (int j = 0; j < 8; ++j) {
// NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];
size_t offs_src_cur = 0;
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
}
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
const int mem_size = src2t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src2t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
const int64_t ny = (_ne1 + nrows - 1)/nrows;
[encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
}
} break;
case GGML_OP_GET_ROWS:
{
id<MTLComputePipelineState> pipeline = nil;
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break;
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break;
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
} break;
case GGML_OP_RMS_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
int nth = 32; // SIMD width
while (nth < ne00/4 && nth < 1024) {
nth *= 2;
}
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_GROUP_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
//float eps;
//memcpy(&eps, dst->op_params, sizeof(float));
const float eps = 1e-6f; // TODO: temporarily hardcoded
const int32_t n_groups = ((int32_t *) dst->op_params)[0];
int nth = 32; // SIMD width
//while (nth < ne00/4 && nth < 1024) {
// nth *= 2;
//}
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&eps length:sizeof( float) atIndex:9];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_NORM:
{
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int nth = MIN(256, ne00);
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ALIBI:
{
GGML_ASSERT((src0t == GGML_TYPE_F32));
const int nth = MIN(1024, ne00);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
[encoder setBytes:&m1 length:sizeof( float) atIndex:19];
[encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ROPE:
{
GGML_ASSERT(ne10 == ne02);
const int nth = MIN(1024, ne00);
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
id<MTLComputePipelineState> pipeline = nil;
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break;
default: GGML_ASSERT(false);
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_IM2COL:
{
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int32_t N = src1->ne[is_2D ? 3 : 2];
const int32_t IC = src1->ne[is_2D ? 2 : 1];
const int32_t IH = is_2D ? src1->ne[1] : 1;
const int32_t IW = src1->ne[0];
const int32_t KH = is_2D ? src0->ne[1] : 1;
const int32_t KW = src0->ne[0];
const int32_t OH = is_2D ? dst->ne[2] : 1;
const int32_t OW = dst->ne[1];
const int32_t CHW = IC * KH * KW;
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
id<MTLComputePipelineState> pipeline = nil;
switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
default: GGML_ASSERT(false);
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
} break;
case GGML_OP_UPSCALE:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int sf = dst->op_params[0];
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&sf length:sizeof(sf) atIndex:18];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_PAD:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARGSORT:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
const int nrows = ggml_nrows(src0);
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
id<MTLComputePipelineState> pipeline = nil;
switch (order) {
case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
default: GGML_ASSERT(false);
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)];
} break;
case GGML_OP_LEAKY_RELU:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
float slope;
memcpy(&slope, dst->op_params, sizeof(float));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&slope length:sizeof(slope) atIndex:2];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_DUP:
case GGML_OP_CPY:
case GGML_OP_CONT:
{
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
int nth = MIN(1024, ne00/ggml_blck_size(src0->type));
id<MTLComputePipelineState> pipeline = nil;
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
switch (dstt) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
//case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
//case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
};
} break;
case GGML_TYPE_F16:
{
switch (dstt) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
};
} break;
default: GGML_ASSERT(false && "not implemented");
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
default:
{
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
}
#ifndef GGML_METAL_NDEBUG
[encoder popDebugGroup];
#endif
}
[encoder endEncoding];
[command_buffer commit];
});
// Wait for completion and check status of each command buffer
// needed to detect if the device ran out-of-memory for example (#1881)
for (int i = 0; i < n_cb; ++i) {
id<MTLCommandBuffer> command_buffer = command_buffers[i];
[command_buffer waitUntilCompleted];
MTLCommandBufferStatus status = [command_buffer status];
if (status != MTLCommandBufferStatusCompleted) {
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
return false;
}
}
return true;
}
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
}
////////////////////////////////////////////////////////////////////////////////
// backend interface
// default buffer
static id<MTLDevice> g_backend_device = nil;
static int g_backend_device_ref_count = 0;
static id<MTLDevice> ggml_backend_metal_get_device(void) {
if (g_backend_device == nil) {
g_backend_device = MTLCreateSystemDefaultDevice();
}
g_backend_device_ref_count++;
return g_backend_device;
}
static void ggml_backend_metal_free_device(void) {
assert(g_backend_device_ref_count > 0);
g_backend_device_ref_count--;
if (g_backend_device_ref_count == 0) {
[g_backend_device release];
g_backend_device = nil;
}
}
GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
return "Metal";
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
UNUSED(buffer);
}
GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
[ctx->buffers[i].metal release];
}
ggml_backend_metal_free_device();
if (ctx->owned) {
free(ctx->all_data);
}
free(ctx);
}
GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
}
GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
UNUSED(buffer);
}
GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(buffer);
}
GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
}
return false;
UNUSED(buffer);
}
GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
/* .get_name = */ ggml_backend_metal_buffer_get_name,
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
/* .get_base = */ ggml_backend_metal_buffer_get_base,
/* .init_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
/* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor,
/* .clear = */ ggml_backend_metal_buffer_clear,
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
/* .reset = */ NULL,
};
// default buffer type
GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
return "Metal";
UNUSED(buft);
}
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device) {
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
if (@available(macOS 10.12, iOS 16.0, *)) {
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
} else {
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
}
#endif
UNUSED(device);
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
ctx->all_data = ggml_metal_host_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
ctx->buffers[0].data = ctx->all_data;
ctx->buffers[0].size = size;
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
length:size_aligned
options:MTLResourceStorageModeShared
deallocator:nil];
if (ctx->buffers[0].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
free(ctx);
ggml_backend_metal_free_device();
return NULL;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
ggml_backend_metal_log_allocated_size(device);
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
}
GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 32;
UNUSED(buft);
}
GGML_CALL static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
UNUSED(buft);
}
GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
UNUSED(buft);
}
GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_buffer_type_metal;
}
// buffer from ptr
GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
ctx->all_data = data;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
// page-align the data ptr
{
const uintptr_t offs = (uintptr_t) data % size_page;
data = (void *) ((char *) data - offs);
size += offs;
}
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
// the buffer fits into the max buffer size allowed by the device
if (size_aligned <= device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = device.maxBufferLength - size_ovlp;
const size_t size_view = device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}
++ctx->n_buffers;
}
}
ggml_backend_metal_log_allocated_size(device);
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
}
// backend
GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal";
UNUSED(backend);
}
GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
ggml_metal_free(ctx);
free(backend);
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_metal_buffer_type();
UNUSED(backend);
}
GGML_CALL static bool ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
return ggml_metal_graph_compute(metal_ctx, cgraph);
}
GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
return ggml_metal_supports_op(metal_ctx, op);
}
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
static struct ggml_backend_i ggml_backend_metal_i = {
/* .get_name = */ ggml_backend_metal_name,
/* .free = */ ggml_backend_metal_free,
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op,
};
2024-01-13 19:45:45 +01:00
void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
ggml_metal_log_callback = log_callback;
ggml_metal_log_user_data = user_data;
}
ggml_backend_t ggml_backend_metal_init(void) {
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
if (ctx == NULL) {
return NULL;
}
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
*metal_backend = (struct ggml_backend) {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
/* .interface = */ ggml_backend_metal_i,
/* .context = */ ctx,
};
return metal_backend;
}
bool ggml_backend_is_metal(ggml_backend_t backend) {
llama : ggml-backend integration (#4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
return backend && backend->iface.get_name == ggml_backend_metal_name;
}
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
2024-01-13 19:45:45 +01:00
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
}
bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
return ggml_backend_metal_init();
GGML_UNUSED(params);
GGML_UNUSED(user_data);
}