2024-06-01 08:44:14 +02:00
|
|
|
#pragma once
|
|
|
|
|
2024-05-18 12:36:25 +02:00
|
|
|
#include "common.cuh"
|
2024-06-01 15:47:04 +02:00
|
|
|
#include "convert.cuh"
|
2024-06-01 08:44:14 +02:00
|
|
|
#include "vecdotq.cuh"
|
2024-05-18 12:36:25 +02:00
|
|
|
|
|
|
|
#include <cstdint>
|
|
|
|
|
2024-05-12 19:40:45 +02:00
|
|
|
#define FATTN_KQ_STRIDE 256
|
|
|
|
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
|
|
|
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
|
|
|
|
2024-05-18 12:36:25 +02:00
|
|
|
typedef void (* fattn_kernel_t)(
|
|
|
|
const char * __restrict__ Q,
|
|
|
|
const char * __restrict__ K,
|
|
|
|
const char * __restrict__ V,
|
|
|
|
const char * __restrict__ mask,
|
|
|
|
float * __restrict__ dst,
|
|
|
|
float2 * __restrict__ dst_meta,
|
|
|
|
const float scale,
|
|
|
|
const float max_bias,
|
|
|
|
const float m0,
|
|
|
|
const float m1,
|
|
|
|
const uint32_t n_head_log2,
|
|
|
|
const int ne00,
|
|
|
|
const int ne01,
|
|
|
|
const int ne02,
|
|
|
|
const int ne03,
|
|
|
|
const int ne10,
|
|
|
|
const int ne11,
|
|
|
|
const int ne12,
|
|
|
|
const int ne13,
|
|
|
|
const int ne31,
|
|
|
|
const int nb31,
|
|
|
|
const int nb01,
|
|
|
|
const int nb02,
|
|
|
|
const int nb03,
|
|
|
|
const int nb11,
|
|
|
|
const int nb12,
|
|
|
|
const int nb13,
|
2024-06-01 08:44:14 +02:00
|
|
|
const int nb21,
|
|
|
|
const int nb22,
|
|
|
|
const int nb23,
|
2024-05-18 12:36:25 +02:00
|
|
|
const int ne0,
|
|
|
|
const int ne1,
|
|
|
|
const int ne2,
|
|
|
|
const int ne3);
|
|
|
|
|
2024-06-01 08:44:14 +02:00
|
|
|
typedef half (*vec_dot_KQ_f16_t)(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
|
|
|
typedef float (*vec_dot_KQ_f32_t)(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
|
|
|
|
|
|
|
template<typename T, int D>
|
|
|
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
2024-06-01 15:47:04 +02:00
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
|
|
|
|
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
|
|
|
|
half sum = 0.0f;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const int ib = k_KQ / QI8_1;
|
|
|
|
const int iqs4 = k_KQ % QI4_0;
|
|
|
|
const int shift = k_KQ & (QI8_1/2);
|
|
|
|
|
|
|
|
const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
|
|
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
|
|
|
|
|
|
|
const int sumi = __dp4a(v, u, 0);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
|
|
|
|
|
|
|
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
|
|
|
|
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
|
|
|
|
} else
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
{
|
|
|
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
|
|
|
|
|
|
|
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
#else
|
|
|
|
GGML_UNUSED(K_c);
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
GGML_UNUSED(Q_q8);
|
|
|
|
GGML_UNUSED(Q_ds_v);
|
|
|
|
NO_DEVICE_CODE;
|
2024-06-01 15:47:04 +02:00
|
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, int D>
|
|
|
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
2024-06-01 15:47:04 +02:00
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
|
|
|
|
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
|
|
|
|
T sum = 0.0f;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const int ib = k_KQ / QI8_1;
|
|
|
|
const int iqs4 = k_KQ % QI4_1;
|
|
|
|
const int shift = k_KQ & (QI8_1/2);
|
|
|
|
|
|
|
|
const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
|
|
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
|
|
|
|
|
|
|
const int sumi = __dp4a(v, u, 0);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
|
|
|
|
|
|
|
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
|
|
|
|
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
|
|
|
|
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
|
|
|
|
} else
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
{
|
|
|
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
|
|
|
|
|
|
|
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
|
|
|
|
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
|
|
|
|
|
|
|
|
sum += (T) (sumid4d8 + m4s8scaled);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
#else
|
|
|
|
GGML_UNUSED(K_c);
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
GGML_UNUSED(Q_q8);
|
|
|
|
GGML_UNUSED(Q_ds_v);
|
|
|
|
NO_DEVICE_CODE;
|
2024-06-01 15:47:04 +02:00
|
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, int D>
|
|
|
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
2024-06-01 15:47:04 +02:00
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
|
|
|
|
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
|
|
|
|
T sum = 0.0f;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const int ib = k_KQ / QI8_1;
|
|
|
|
const int iqs4 = k_KQ % QI5_0;
|
|
|
|
const int iqs8 = k_KQ % QI8_1;
|
|
|
|
const int shift = k_KQ & (QI8_1/2);
|
|
|
|
|
|
|
|
int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
|
|
|
const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
|
|
|
|
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
|
|
|
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
|
|
|
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
|
|
|
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
|
|
|
|
|
|
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
|
|
|
|
|
|
|
const int sumi = __dp4a(v, u, 0);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
|
|
|
|
|
|
|
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
|
|
|
|
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
|
|
|
|
} else
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
{
|
|
|
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
|
|
|
|
|
|
|
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
#else
|
|
|
|
GGML_UNUSED(K_c);
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
GGML_UNUSED(Q_q8);
|
|
|
|
GGML_UNUSED(Q_ds_v);
|
|
|
|
NO_DEVICE_CODE;
|
2024-06-01 15:47:04 +02:00
|
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, int D>
|
|
|
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
2024-06-01 15:47:04 +02:00
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
|
|
|
|
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
|
|
|
|
T sum = 0.0f;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const int ib = k_KQ / QI8_1;
|
|
|
|
const int iqs4 = k_KQ % QI5_1;
|
|
|
|
const int iqs8 = k_KQ % QI8_1;
|
|
|
|
const int shift = k_KQ & (QI8_1/2);
|
|
|
|
|
|
|
|
int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
|
|
|
const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
|
|
|
|
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
|
|
|
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
|
|
|
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
|
|
|
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
|
|
|
|
|
|
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
|
|
|
|
|
|
|
const int sumi = __dp4a(v, u, 0);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
|
|
|
|
|
|
|
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
|
|
|
|
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
|
|
|
|
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
|
|
|
|
} else
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
{
|
|
|
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
|
|
|
|
|
|
|
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
|
|
|
|
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
|
|
|
|
|
|
|
|
sum += (T) (sumid5d8 + m5s8scaled);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
#else
|
|
|
|
GGML_UNUSED(K_c);
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
GGML_UNUSED(Q_q8);
|
|
|
|
GGML_UNUSED(Q_ds_v);
|
|
|
|
NO_DEVICE_CODE;
|
2024-06-01 15:47:04 +02:00
|
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, int D>
|
|
|
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
2024-06-01 15:47:04 +02:00
|
|
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
|
|
|
|
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
|
|
|
|
T sum = 0.0f;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const int ib = k_KQ / QI8_0;
|
|
|
|
const int iqs = k_KQ % QI8_0;
|
|
|
|
|
|
|
|
const int v = get_int_from_int8(K_q8_0[ib].qs, iqs);
|
|
|
|
|
|
|
|
T Q_d;
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
|
|
|
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
|
|
|
|
} else {
|
|
|
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
|
|
|
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
|
|
|
|
}
|
|
|
|
|
|
|
|
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
#else
|
|
|
|
GGML_UNUSED(K_c);
|
|
|
|
GGML_UNUSED(Q_v);
|
|
|
|
GGML_UNUSED(Q_q8);
|
|
|
|
GGML_UNUSED(Q_ds_v);
|
|
|
|
NO_DEVICE_CODE;
|
2024-06-01 15:47:04 +02:00
|
|
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
2024-06-01 08:44:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, int D>
|
|
|
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
|
|
|
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
|
|
|
|
|
|
|
|
const half2 * K_h2 = (const half2 *) K_c;
|
|
|
|
GGML_UNUSED(Q_q8);
|
|
|
|
GGML_UNUSED(Q_ds_v);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
const half2 * Q_h2 = (const half2 *) Q_v;
|
|
|
|
|
|
|
|
half2 sum2 = make_half2(0.0f, 0.0f);
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const half2 K_ik = K_h2[k_KQ];
|
|
|
|
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
|
|
|
|
}
|
|
|
|
|
|
|
|
return __low2half(sum2) + __high2half(sum2);
|
|
|
|
}
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
|
|
|
|
const float2 * Q_f2 = (const float2 *) Q_v;
|
|
|
|
|
|
|
|
float sum = 0.0f;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
|
|
|
|
const half2 K_ik = K_h2[k_KQ];
|
|
|
|
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
|
|
|
|
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Tds>
|
|
|
|
static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
|
|
|
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
|
|
|
|
|
|
|
|
float vals[sizeof(int)] = {0.0f};
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 0; l < sizeof(int); ++l) {
|
|
|
|
vals[l] = scale * x[4*threadIdx.x + l];
|
|
|
|
}
|
|
|
|
|
|
|
|
float amax = fabsf(vals[0]);
|
|
|
|
float sum = vals[0];
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 1; l < sizeof(int); ++l) {
|
|
|
|
amax = fmaxf(amax, fabsf(vals[l]));
|
|
|
|
sum += vals[l];
|
|
|
|
}
|
|
|
|
#pragma unroll
|
|
|
|
for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
|
|
|
|
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
|
|
|
|
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = amax / 127;
|
|
|
|
int q32 = 0;
|
|
|
|
int8_t * q8 = (int8_t *) &q32;
|
|
|
|
|
|
|
|
if (d != 0.0f) {
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 0; l < sizeof(int); ++l) {
|
|
|
|
q8[l] = roundf(vals[l] / d);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
yq32[threadIdx.x] = q32;
|
|
|
|
if (threadIdx.x % QI8_1 == 0) {
|
|
|
|
if (std::is_same<Tds, half2>::value) {
|
|
|
|
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
|
|
|
|
} else {
|
|
|
|
((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
|
|
|
|
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
|
|
|
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
|
|
|
|
|
|
|
const int64_t ib = i / QK4_0;
|
|
|
|
const int iqs = i % (QK4_0/2);
|
|
|
|
const int shift = (i % QK4_0) / (QK4_0/2);
|
|
|
|
|
|
|
|
const T d = x[ib].d;
|
|
|
|
const int q0 = x[ib].qs[iqs];
|
|
|
|
const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
return ((half) d)*((half) q);
|
|
|
|
}
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
|
|
|
|
return ((float) d)*((float) q);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
|
|
|
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
|
|
|
|
|
|
|
const int64_t ib = i / QK4_1;
|
|
|
|
const int iqs = i % (QK4_1/2);
|
|
|
|
const int shift = (i % QK4_1) / (QK4_1/2);
|
|
|
|
|
|
|
|
const half2 dm = x[ib].dm;
|
|
|
|
const int q0 = x[ib].qs[iqs];
|
|
|
|
const int q = ((q0 >> (4*shift)) & 0x0F);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
return __low2half(dm)*((half) q) + __high2half(dm);
|
|
|
|
}
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
|
|
|
|
return __low2float(dm)*((float) q) + __high2float(dm);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
|
|
|
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
|
|
|
|
|
|
|
const int64_t ib = i / QK5_0;
|
|
|
|
const int idq = i % QK5_0;
|
|
|
|
const int iqs = i % (QK5_0/2);
|
|
|
|
const int shift = (i % QK5_0) / (QK5_0/2);
|
|
|
|
|
|
|
|
const T d = x[ib].d;
|
|
|
|
const int ql0 = x[ib].qs[iqs];
|
|
|
|
const int qh0 = get_int_from_uint8(x[ib].qh, 0);
|
|
|
|
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
|
|
|
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
|
|
|
const int q = (ql | qh) - 16;
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
return ((half) d)*((half) q);
|
|
|
|
}
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
|
|
|
|
return ((float) d)*((float) q);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
|
|
|
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
|
|
|
|
|
|
|
const int64_t ib = i / QK5_1;
|
|
|
|
const int idq = i % QK5_1;
|
|
|
|
const int iqs = i % (QK5_1/2);
|
|
|
|
const int shift = (i % QK5_1) / (QK5_1/2);
|
|
|
|
|
|
|
|
const half2 dm = x[ib].dm;
|
|
|
|
const int ql0 = x[ib].qs[iqs];
|
|
|
|
const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0);
|
|
|
|
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
|
|
|
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
|
|
|
const int q = (ql | qh);
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
return __low2half(dm)*((half) q) + __high2half(dm);
|
|
|
|
}
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
|
|
|
|
return __low2float(dm)*((float) q) + __high2float(dm);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
|
|
|
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
|
|
|
|
|
|
|
const int64_t ib = i / QK8_0;
|
|
|
|
const int iqs = i % QK8_0;
|
|
|
|
|
|
|
|
const T d = x[ib].d;
|
|
|
|
const int q = x[ib].qs[iqs];
|
|
|
|
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
if (std::is_same<T, half>::value) {
|
|
|
|
return ((half) d)*((half) q);
|
|
|
|
}
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
|
|
|
|
return ((float) d)*((float) q);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
|
|
|
|
const half * x = (const half *) vx;
|
|
|
|
|
|
|
|
return x[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int D>
|
|
|
|
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
|
|
|
|
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
|
|
|
|
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
|
|
|
|
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
|
|
|
|
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
|
|
|
|
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
|
|
|
|
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
|
|
|
|
nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int D>
|
|
|
|
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
|
|
|
|
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
|
|
|
|
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
|
|
|
|
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
|
|
|
|
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
|
|
|
|
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
|
|
|
|
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
|
|
|
|
nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
|
|
|
|
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
|
|
|
|
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
|
|
|
|
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
|
|
|
|
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
|
|
|
|
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
|
|
|
|
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
|
|
|
|
nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
|
|
|
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
|
|
|
|
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
|
|
|
|
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
|
|
|
|
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
|
|
|
|
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
|
|
|
|
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
|
|
|
|
nullptr;
|
|
|
|
}
|
|
|
|
|
2024-05-12 19:40:45 +02:00
|
|
|
template<int D, int parallel_blocks> // D == head size
|
|
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
|
|
__launch_bounds__(D, 1)
|
|
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
|
|
static __global__ void flash_attn_combine_results(
|
|
|
|
const float * __restrict__ VKQ_parts,
|
|
|
|
const float2 * __restrict__ VKQ_meta,
|
|
|
|
float * __restrict__ dst) {
|
|
|
|
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
|
|
|
|
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
|
|
|
|
dst += D * gridDim.y*blockIdx.x;
|
|
|
|
|
|
|
|
const int tid = threadIdx.x;
|
|
|
|
__builtin_assume(tid < D);
|
|
|
|
|
|
|
|
__shared__ float2 meta[parallel_blocks];
|
|
|
|
if (tid < 2*parallel_blocks) {
|
|
|
|
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
float kqmax = meta[0].x;
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 1; l < parallel_blocks; ++l) {
|
|
|
|
kqmax = max(kqmax, meta[l].x);
|
|
|
|
}
|
|
|
|
|
|
|
|
float VKQ_numerator = 0.0f;
|
|
|
|
float VKQ_denominator = 0.0f;
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 0; l < parallel_blocks; ++l) {
|
|
|
|
const float diff = meta[l].x - kqmax;
|
|
|
|
const float KQ_max_scale = expf(diff);
|
|
|
|
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
|
|
|
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
|
|
|
|
|
|
|
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
|
|
|
|
VKQ_denominator += KQ_max_scale * meta[l].y;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
|
|
|
}
|
2024-05-18 12:36:25 +02:00
|
|
|
|
2024-06-01 08:44:14 +02:00
|
|
|
static void on_no_fattn_vec_case(const int D) {
|
|
|
|
if (D == 64) {
|
|
|
|
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
|
|
|
|
fprintf(stderr, "By default only f16 KV cache is supported.\n");
|
|
|
|
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
} else if (D == 128) {
|
|
|
|
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
|
|
|
|
fprintf(stderr, "Supported combinations:\n");
|
|
|
|
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
|
|
|
|
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
|
|
|
|
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
|
|
|
|
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
|
|
|
|
fprintf(stderr, "Only f16 is supported.\n");
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-05-18 12:36:25 +02:00
|
|
|
template <int D, int parallel_blocks>
|
2024-06-01 15:47:04 +02:00
|
|
|
void launch_fattn(
|
|
|
|
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
|
|
|
|
const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V
|
|
|
|
) {
|
2024-05-18 12:36:25 +02:00
|
|
|
const ggml_tensor * Q = dst->src[0];
|
|
|
|
const ggml_tensor * K = dst->src[1];
|
|
|
|
const ggml_tensor * V = dst->src[2];
|
|
|
|
|
|
|
|
const ggml_tensor * mask = dst->src[3];
|
|
|
|
|
|
|
|
ggml_tensor * KQV = dst;
|
|
|
|
|
|
|
|
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
|
|
|
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
|
|
|
|
|
|
|
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
|
|
|
|
|
|
|
ggml_cuda_pool & pool = ctx.pool();
|
|
|
|
cudaStream_t main_stream = ctx.stream();
|
|
|
|
|
2024-06-01 15:47:04 +02:00
|
|
|
ggml_cuda_pool_alloc<half> K_f16(pool);
|
|
|
|
ggml_cuda_pool_alloc<half> V_f16(pool);
|
2024-05-18 12:36:25 +02:00
|
|
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
|
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
|
|
|
2024-06-01 15:47:04 +02:00
|
|
|
char * K_data = (char *) K->data;
|
|
|
|
size_t nb11 = K->nb[1];
|
|
|
|
size_t nb12 = K->nb[2];
|
|
|
|
size_t nb13 = K->nb[3];
|
|
|
|
|
|
|
|
char * V_data = (char *) V->data;
|
|
|
|
size_t nb21 = V->nb[1];
|
|
|
|
size_t nb22 = V->nb[2];
|
|
|
|
size_t nb23 = V->nb[3];
|
|
|
|
|
|
|
|
if (need_f16_K && K->type != GGML_TYPE_F16) {
|
|
|
|
K_f16.alloc(ggml_nelements(K));
|
|
|
|
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
|
|
|
|
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
|
|
|
|
K_data = (char *) K_f16.ptr;
|
|
|
|
|
|
|
|
const size_t bs = ggml_blck_size(K->type);
|
|
|
|
const size_t ts = ggml_type_size(K->type);
|
|
|
|
|
|
|
|
nb11 = nb11*bs*sizeof(half)/ts;
|
|
|
|
nb12 = nb12*bs*sizeof(half)/ts;
|
|
|
|
nb13 = nb13*bs*sizeof(half)/ts;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (need_f16_V && V->type != GGML_TYPE_F16) {
|
|
|
|
V_f16.alloc(ggml_nelements(V));
|
|
|
|
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
|
|
|
|
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
|
|
|
|
V_data = (char *) V_f16.ptr;
|
|
|
|
|
|
|
|
const size_t bs = ggml_blck_size(V->type);
|
|
|
|
const size_t ts = ggml_type_size(V->type);
|
|
|
|
|
|
|
|
nb21 = nb21*bs*sizeof(half)/ts;
|
|
|
|
nb22 = nb22*bs*sizeof(half)/ts;
|
|
|
|
nb23 = nb23*bs*sizeof(half)/ts;
|
|
|
|
}
|
|
|
|
|
2024-05-18 12:36:25 +02:00
|
|
|
if (parallel_blocks > 1) {
|
|
|
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
|
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
|
|
}
|
|
|
|
|
|
|
|
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
|
|
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
|
|
|
const int shmem = 0;
|
|
|
|
|
|
|
|
float scale = 1.0f;
|
|
|
|
float max_bias = 0.0f;
|
|
|
|
|
|
|
|
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
|
|
|
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
|
|
|
|
|
|
|
const uint32_t n_head = Q->ne[2];
|
|
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
|
|
|
|
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
|
|
|
(const char *) Q->data,
|
2024-06-01 15:47:04 +02:00
|
|
|
K_data,
|
|
|
|
V_data,
|
2024-05-18 12:36:25 +02:00
|
|
|
mask ? ((const char *) mask->data) : nullptr,
|
|
|
|
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
|
|
scale, max_bias, m0, m1, n_head_log2,
|
|
|
|
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
|
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
|
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
|
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
2024-06-01 15:47:04 +02:00
|
|
|
nb11, nb12, nb13,
|
|
|
|
nb21, nb22, nb23,
|
2024-05-18 12:36:25 +02:00
|
|
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
|
|
);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
|
|
|
|
if ((parallel_blocks) == 1) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const dim3 block_dim_combine(D, 1, 1);
|
|
|
|
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
|
|
const int shmem_combine = 0;
|
|
|
|
|
|
|
|
flash_attn_combine_results<D, parallel_blocks>
|
|
|
|
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
|
|
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
}
|