mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-02-01 06:32:31 +01:00
930 lines
42 KiB
C++
930 lines
42 KiB
C++
|
#include "llama-quant.h"
|
||
|
|
||
|
#include "llama-impl.h"
|
||
|
#include "llama-model.h"
|
||
|
#include "llama-model-loader.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
#include <cstring>
|
||
|
#include <fstream>
|
||
|
#include <mutex>
|
||
|
#include <thread>
|
||
|
#include <unordered_map>
|
||
|
|
||
|
// TODO: replace with ggml API call
|
||
|
#define QK_K 256
|
||
|
|
||
|
static void zeros(std::ofstream & file, size_t n) {
|
||
|
char zero = 0;
|
||
|
for (size_t i = 0; i < n; ++i) {
|
||
|
file.write(&zero, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct quantize_state_internal {
|
||
|
const llama_model & model;
|
||
|
const llama_model_quantize_params * params;
|
||
|
|
||
|
int n_attention_wv = 0;
|
||
|
int n_ffn_down = 0;
|
||
|
int n_ffn_gate = 0;
|
||
|
int n_ffn_up = 0;
|
||
|
int i_attention_wv = 0;
|
||
|
int i_ffn_down = 0;
|
||
|
int i_ffn_gate = 0;
|
||
|
int i_ffn_up = 0;
|
||
|
|
||
|
int n_k_quantized = 0;
|
||
|
int n_fallback = 0;
|
||
|
|
||
|
bool has_imatrix = false;
|
||
|
|
||
|
// used to figure out if a model shares tok_embd with the output weight
|
||
|
bool has_output = false;
|
||
|
|
||
|
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
|
||
|
: model(model)
|
||
|
, params(params)
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static void llama_tensor_dequantize_internal(
|
||
|
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||
|
const size_t nelements, const int nthread
|
||
|
) {
|
||
|
if (output.size() < nelements) {
|
||
|
output.resize(nelements);
|
||
|
}
|
||
|
float * f32_output = (float *) output.data();
|
||
|
|
||
|
const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type);
|
||
|
if (ggml_is_quantized(tensor->type)) {
|
||
|
if (qtype->to_float == NULL) {
|
||
|
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
|
||
|
}
|
||
|
} else if (tensor->type != GGML_TYPE_F16 &&
|
||
|
tensor->type != GGML_TYPE_BF16) {
|
||
|
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
|
||
|
}
|
||
|
|
||
|
if (nthread < 2) {
|
||
|
if (tensor->type == GGML_TYPE_F16) {
|
||
|
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
|
||
|
} else if (tensor->type == GGML_TYPE_BF16) {
|
||
|
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
|
||
|
} else if (ggml_is_quantized(tensor->type)) {
|
||
|
qtype->to_float(tensor->data, f32_output, nelements);
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // unreachable
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
size_t block_size;
|
||
|
if (tensor->type == GGML_TYPE_F16 ||
|
||
|
tensor->type == GGML_TYPE_BF16) {
|
||
|
block_size = 1;
|
||
|
} else {
|
||
|
block_size = (size_t)ggml_blck_size(tensor->type);
|
||
|
}
|
||
|
|
||
|
size_t block_size_bytes = ggml_type_size(tensor->type);
|
||
|
|
||
|
GGML_ASSERT(nelements % block_size == 0);
|
||
|
size_t nblocks = nelements / block_size;
|
||
|
size_t blocks_per_thread = nblocks / nthread;
|
||
|
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
|
||
|
|
||
|
size_t in_buff_offs = 0;
|
||
|
size_t out_buff_offs = 0;
|
||
|
|
||
|
for (int tnum = 0; tnum < nthread; tnum++) {
|
||
|
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
|
||
|
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
|
||
|
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
|
||
|
|
||
|
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
|
||
|
if (typ == GGML_TYPE_F16) {
|
||
|
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
|
||
|
} else if (typ == GGML_TYPE_BF16) {
|
||
|
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
|
||
|
} else {
|
||
|
qtype->to_float(inbuf, outbuf, nels);
|
||
|
}
|
||
|
};
|
||
|
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
|
||
|
in_buff_offs += thr_block_bytes;
|
||
|
out_buff_offs += thr_elems;
|
||
|
}
|
||
|
for (auto & w : workers) { w.join(); }
|
||
|
workers.clear();
|
||
|
}
|
||
|
|
||
|
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||
|
const std::string name = ggml_get_name(tensor);
|
||
|
|
||
|
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||
|
const llm_arch arch = qs.model.arch;
|
||
|
const auto tn = LLM_TN(arch);
|
||
|
|
||
|
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
|
||
|
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
||
|
};
|
||
|
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
||
|
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
|
||
|
if (n_expert > 1) {
|
||
|
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
|
||
|
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
|
||
|
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
||
|
// tensor name.
|
||
|
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
|
||
|
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
|
||
|
}
|
||
|
if (i_layer < 0 || i_layer >= n_layer) {
|
||
|
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
|
||
|
}
|
||
|
}
|
||
|
return std::make_pair(i_layer, n_layer);
|
||
|
};
|
||
|
|
||
|
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
|
||
|
// with the quantization of the output tensor
|
||
|
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
|
||
|
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
|
||
|
new_type = qs.params->output_tensor_type;
|
||
|
} else {
|
||
|
int nx = tensor->ne[0];
|
||
|
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||
|
new_type = GGML_TYPE_Q8_0;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||
|
new_type = GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
else if (new_type != GGML_TYPE_Q8_0) {
|
||
|
new_type = GGML_TYPE_Q6_K;
|
||
|
}
|
||
|
}
|
||
|
} else if (name == "token_embd.weight") {
|
||
|
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
|
||
|
new_type = qs.params->token_embedding_type;
|
||
|
} else {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||
|
new_type = GGML_TYPE_Q2_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
||
|
new_type = GGML_TYPE_IQ3_S;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
|
new_type = GGML_TYPE_IQ3_S;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
}
|
||
|
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||
|
if (name.find("attn_v.weight") != std::string::npos) {
|
||
|
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||
|
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||
|
++qs.i_attention_wv;
|
||
|
}
|
||
|
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (name.find("ffn_down") != std::string::npos) {
|
||
|
if (qs.i_ffn_down < qs.n_ffn_down/8) {
|
||
|
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||
|
}
|
||
|
++qs.i_ffn_down;
|
||
|
}
|
||
|
else if (name.find("attn_output.weight") != std::string::npos) {
|
||
|
if (qs.model.hparams.n_expert == 8) {
|
||
|
new_type = GGML_TYPE_Q5_K;
|
||
|
} else {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
|
||
|
}
|
||
|
}
|
||
|
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
||
|
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
|
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
||
|
}
|
||
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||
|
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
|
||
|
new_type = GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||
|
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||
|
if (qs.model.type == MODEL_70B) {
|
||
|
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||
|
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||
|
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||
|
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
if (qs.model.hparams.n_expert == 8) {
|
||
|
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||
|
// TODO: explore better strategies
|
||
|
new_type = GGML_TYPE_Q8_0;
|
||
|
}
|
||
|
++qs.i_attention_wv;
|
||
|
} else if (name.find("attn_k.weight") != std::string::npos) {
|
||
|
if (qs.model.hparams.n_expert == 8) {
|
||
|
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||
|
// TODO: explore better strategies
|
||
|
new_type = GGML_TYPE_Q8_0;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||
|
new_type = GGML_TYPE_IQ3_XXS;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
|
new_type = GGML_TYPE_IQ2_S;
|
||
|
}
|
||
|
} else if (name.find("attn_q.weight") != std::string::npos) {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||
|
new_type = GGML_TYPE_IQ3_XXS;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
|
new_type = GGML_TYPE_IQ2_S;
|
||
|
}
|
||
|
} else if (name.find("ffn_down") != std::string::npos) {
|
||
|
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
|
||
|
int i_layer = info.first, n_layer = info.second;
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
||
|
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
|
||
|
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||
|
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||
|
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||
|
: GGML_TYPE_Q3_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
|
||
|
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||
|
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||
|
if (arch == LLM_ARCH_FALCON) {
|
||
|
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||
|
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||
|
} else {
|
||
|
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||
|
}
|
||
|
}
|
||
|
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
||
|
new_type = GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||
|
new_type = GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
||
|
&& qs.has_imatrix && i_layer < n_layer/8) {
|
||
|
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
||
|
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
|
||
|
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
||
|
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
||
|
}
|
||
|
++qs.i_ffn_down;
|
||
|
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||
|
if (arch != LLM_ARCH_FALCON) {
|
||
|
if (qs.model.hparams.n_expert == 8) {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
|
||
|
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
|
||
|
new_type = GGML_TYPE_Q5_K;
|
||
|
}
|
||
|
} else {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
} else {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
}
|
||
|
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||
|
new_type = GGML_TYPE_Q4_K;
|
||
|
}
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||
|
}
|
||
|
else if (name.find("ffn_gate") != std::string::npos) {
|
||
|
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
|
||
|
int i_layer = info.first, n_layer = info.second;
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||
|
new_type = GGML_TYPE_IQ3_XXS;
|
||
|
}
|
||
|
++qs.i_ffn_gate;
|
||
|
}
|
||
|
else if (name.find("ffn_up") != std::string::npos) {
|
||
|
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
|
||
|
int i_layer = info.first, n_layer = info.second;
|
||
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||
|
new_type = GGML_TYPE_IQ3_XXS;
|
||
|
}
|
||
|
++qs.i_ffn_up;
|
||
|
}
|
||
|
|
||
|
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||
|
//}
|
||
|
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
|
||
|
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
|
||
|
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||
|
//}
|
||
|
// This can be used to reduce the size of the Q5_K_S model.
|
||
|
// The associated PPL increase is fully in line with the size reduction
|
||
|
//else {
|
||
|
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
||
|
//}
|
||
|
bool convert_incompatible_tensor = false;
|
||
|
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||
|
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
|
||
|
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
|
||
|
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
|
||
|
new_type == GGML_TYPE_IQ1_M) {
|
||
|
int nx = tensor->ne[0];
|
||
|
int ny = tensor->ne[1];
|
||
|
if (nx % QK_K != 0) {
|
||
|
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
|
||
|
convert_incompatible_tensor = true;
|
||
|
} else {
|
||
|
++qs.n_k_quantized;
|
||
|
}
|
||
|
}
|
||
|
if (convert_incompatible_tensor) {
|
||
|
switch (new_type) {
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
|
||
|
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
|
||
|
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
|
||
|
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
|
||
|
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
|
||
|
}
|
||
|
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
|
||
|
new_type = GGML_TYPE_F16;
|
||
|
}
|
||
|
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
|
||
|
++qs.n_fallback;
|
||
|
}
|
||
|
|
||
|
return new_type;
|
||
|
}
|
||
|
|
||
|
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||
|
if (nthread < 2) {
|
||
|
// single-thread
|
||
|
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
|
||
|
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
|
||
|
throw std::runtime_error("quantized data validation failed");
|
||
|
}
|
||
|
return new_size;
|
||
|
}
|
||
|
|
||
|
std::mutex mutex;
|
||
|
int64_t counter = 0;
|
||
|
size_t new_size = 0;
|
||
|
bool valid = true;
|
||
|
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
|
||
|
nrows, n_per_row, imatrix]() {
|
||
|
const int64_t nrows_per_chunk = chunk_size / n_per_row;
|
||
|
size_t local_size = 0;
|
||
|
while (true) {
|
||
|
std::unique_lock<std::mutex> lock(mutex);
|
||
|
int64_t first_row = counter; counter += nrows_per_chunk;
|
||
|
if (first_row >= nrows) {
|
||
|
if (local_size > 0) {
|
||
|
new_size += local_size;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
lock.unlock();
|
||
|
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
||
|
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
|
||
|
local_size += this_size;
|
||
|
|
||
|
// validate the quantized data
|
||
|
const size_t row_size = ggml_row_size(new_type, n_per_row);
|
||
|
void * this_data = (char *) new_data + first_row * row_size;
|
||
|
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
|
||
|
std::unique_lock<std::mutex> lock(mutex);
|
||
|
valid = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
for (int it = 0; it < nthread - 1; ++it) {
|
||
|
workers.emplace_back(compute);
|
||
|
}
|
||
|
compute();
|
||
|
for (auto & w : workers) { w.join(); }
|
||
|
workers.clear();
|
||
|
if (!valid) {
|
||
|
throw std::runtime_error("quantized data validation failed");
|
||
|
}
|
||
|
return new_size;
|
||
|
}
|
||
|
|
||
|
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||
|
ggml_type default_type;
|
||
|
llama_ftype ftype = params->ftype;
|
||
|
|
||
|
switch (params->ftype) {
|
||
|
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
|
||
|
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
|
||
|
|
||
|
// K-quants
|
||
|
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
|
||
|
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
||
|
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
|
||
|
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
|
||
|
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
||
|
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
|
||
|
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
|
||
|
|
||
|
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||
|
}
|
||
|
|
||
|
int nthread = params->nthread;
|
||
|
|
||
|
if (nthread <= 0) {
|
||
|
nthread = std::thread::hardware_concurrency();
|
||
|
}
|
||
|
|
||
|
// mmap consistently increases speed Linux, and also increases speed on Windows with
|
||
|
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
|
||
|
#if defined(__linux__) || defined(_WIN32)
|
||
|
constexpr bool use_mmap = true;
|
||
|
#else
|
||
|
constexpr bool use_mmap = false;
|
||
|
#endif
|
||
|
|
||
|
llama_model_kv_override * kv_overrides = nullptr;
|
||
|
if (params->kv_overrides) {
|
||
|
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
||
|
kv_overrides = v->data();
|
||
|
}
|
||
|
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
|
||
|
ml.init_mappings(false); // no prefetching
|
||
|
|
||
|
llama_model model;
|
||
|
llm_load_arch (ml, model);
|
||
|
llm_load_hparams(ml, model);
|
||
|
llm_load_stats (ml, model);
|
||
|
|
||
|
struct quantize_state_internal qs(model, params);
|
||
|
|
||
|
if (params->only_copy) {
|
||
|
ftype = model.ftype;
|
||
|
}
|
||
|
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
|
||
|
if (params->imatrix) {
|
||
|
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
|
||
|
if (imatrix_data) {
|
||
|
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
|
||
|
qs.has_imatrix = true;
|
||
|
// check imatrix for nans or infs
|
||
|
for (const auto & kv : *imatrix_data) {
|
||
|
for (float f : kv.second) {
|
||
|
if (!std::isfinite(f)) {
|
||
|
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
||
|
gguf_context_ptr ctx_out { gguf_init_empty() };
|
||
|
|
||
|
// copy the KV pairs from the input file
|
||
|
gguf_set_kv (ctx_out.get(), ml.meta.get());
|
||
|
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
|
||
|
gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV
|
||
|
|
||
|
// Remove split metadata
|
||
|
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
|
||
|
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
|
||
|
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
|
||
|
|
||
|
if (params->kv_overrides) {
|
||
|
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
|
||
|
for (const auto & o : overrides) {
|
||
|
if (o.key[0] == 0) break;
|
||
|
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
|
||
|
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
|
||
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
|
||
|
gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64);
|
||
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
|
||
|
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
|
||
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
|
||
|
gguf_set_val_str(ctx_out.get(), o.key, o.val_str);
|
||
|
} else {
|
||
|
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// make a list of weights
|
||
|
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
|
||
|
tensors.reserve(ml.weights_map.size());
|
||
|
for (const auto & it : ml.weights_map) {
|
||
|
tensors.push_back(&it.second);
|
||
|
}
|
||
|
|
||
|
// keep_split requires that the weights are sorted by split index
|
||
|
if (params->keep_split) {
|
||
|
std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) {
|
||
|
if (a->idx == b->idx) {
|
||
|
return a->offs < b->offs;
|
||
|
}
|
||
|
return a->idx < b->idx;
|
||
|
});
|
||
|
}
|
||
|
|
||
|
for (const auto * it : tensors) {
|
||
|
const struct ggml_tensor * tensor = it->tensor;
|
||
|
|
||
|
const std::string name = ggml_get_name(tensor);
|
||
|
|
||
|
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||
|
if (name.find("attn_v.weight") != std::string::npos ||
|
||
|
name.find("attn_qkv.weight") != std::string::npos ||
|
||
|
name.find("attn_kv_b.weight")!= std::string::npos) {
|
||
|
++qs.n_attention_wv;
|
||
|
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
|
||
|
qs.has_output = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
|
||
|
|
||
|
// sanity checks
|
||
|
{
|
||
|
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
|
||
|
// attention layers have a non-zero number of kv heads
|
||
|
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
|
||
|
if (llama_model_has_encoder(&model)) {
|
||
|
n_attn_layer *= 3;
|
||
|
}
|
||
|
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||
|
}
|
||
|
|
||
|
size_t total_size_org = 0;
|
||
|
size_t total_size_new = 0;
|
||
|
|
||
|
std::vector<std::thread> workers;
|
||
|
workers.reserve(nthread);
|
||
|
|
||
|
int idx = 0;
|
||
|
|
||
|
std::vector<no_init<uint8_t>> read_data;
|
||
|
std::vector<no_init<uint8_t>> work;
|
||
|
std::vector<no_init<float>> f32_conv_buf;
|
||
|
|
||
|
uint16_t n_split = 1;
|
||
|
|
||
|
// Assume split index is continuous
|
||
|
if (params->keep_split) {
|
||
|
for (const auto * it : tensors) {
|
||
|
n_split = std::max(uint16_t(it->idx + 1), n_split);
|
||
|
}
|
||
|
}
|
||
|
std::vector<gguf_context_ptr> ctx_outs(n_split);
|
||
|
ctx_outs[0] = std::move(ctx_out);
|
||
|
|
||
|
// populate the original tensors so we get an initial meta data
|
||
|
for (const auto * it : tensors) {
|
||
|
uint16_t i_split = params->keep_split ? it->idx : 0;
|
||
|
struct ggml_tensor * tensor = it->tensor;
|
||
|
if (!ctx_outs[i_split]) {
|
||
|
ctx_outs[i_split].reset(gguf_init_empty());
|
||
|
}
|
||
|
gguf_add_tensor(ctx_outs[i_split].get(), tensor);
|
||
|
}
|
||
|
|
||
|
// Set split info if needed
|
||
|
if (n_split > 1) {
|
||
|
for (size_t i = 0; i < ctx_outs.size(); ++i) {
|
||
|
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
|
||
|
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
|
||
|
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int cur_split = -1;
|
||
|
std::ofstream fout;
|
||
|
auto close_ofstream = [&]() {
|
||
|
// Write metadata and close file handler
|
||
|
if (fout.is_open()) {
|
||
|
fout.seekp(0);
|
||
|
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split].get()));
|
||
|
gguf_get_meta_data(ctx_outs[cur_split].get(), data.data());
|
||
|
fout.write((const char *) data.data(), data.size());
|
||
|
fout.close();
|
||
|
}
|
||
|
};
|
||
|
auto new_ofstream = [&](int index) {
|
||
|
cur_split = index;
|
||
|
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
|
||
|
std::string fname = fname_out;
|
||
|
if (params->keep_split) {
|
||
|
std::vector<char> split_path(llama_path_max(), 0);
|
||
|
llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split);
|
||
|
fname = std::string(split_path.data());
|
||
|
}
|
||
|
|
||
|
fout = std::ofstream(fname, std::ios::binary);
|
||
|
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||
|
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get());
|
||
|
// placeholder for the meta data
|
||
|
::zeros(fout, meta_size);
|
||
|
};
|
||
|
|
||
|
const auto tn = LLM_TN(model.arch);
|
||
|
new_ofstream(0);
|
||
|
for (const auto * it : tensors) {
|
||
|
const auto & weight = *it;
|
||
|
struct ggml_tensor * tensor = weight.tensor;
|
||
|
if (weight.idx != cur_split && params->keep_split) {
|
||
|
close_ofstream();
|
||
|
new_ofstream(weight.idx);
|
||
|
}
|
||
|
|
||
|
const std::string name = ggml_get_name(tensor);
|
||
|
|
||
|
if (!ml.use_mmap) {
|
||
|
if (read_data.size() < ggml_nbytes(tensor)) {
|
||
|
read_data.resize(ggml_nbytes(tensor));
|
||
|
}
|
||
|
tensor->data = read_data.data();
|
||
|
}
|
||
|
ml.load_data_for(tensor);
|
||
|
|
||
|
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
|
||
|
++idx, ml.n_tensors,
|
||
|
ggml_get_name(tensor),
|
||
|
llama_format_tensor_shape(tensor).c_str(),
|
||
|
ggml_type_name(tensor->type));
|
||
|
|
||
|
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||
|
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||
|
|
||
|
// quantize only 2D and 3D tensors (experts)
|
||
|
quantize &= (ggml_n_dims(tensor) >= 2);
|
||
|
|
||
|
// do not quantize norm tensors
|
||
|
quantize &= name.find("_norm.weight") == std::string::npos;
|
||
|
|
||
|
quantize &= params->quantize_output_tensor || name != "output.weight";
|
||
|
quantize &= !params->only_copy;
|
||
|
|
||
|
// do not quantize expert gating tensors
|
||
|
// NOTE: can't use LLM_TN here because the layer number is not known
|
||
|
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
|
||
|
|
||
|
// do not quantize positional embeddings and token types (BERT)
|
||
|
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
|
||
|
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
|
||
|
|
||
|
// do not quantize Mamba's small yet 2D weights
|
||
|
// NOTE: can't use LLM_TN here because the layer number is not known
|
||
|
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
|
||
|
|
||
|
// do not quantize RWKV's time_mix_first tensors
|
||
|
quantize &= name.find("time_mix_first.weight") == std::string::npos;
|
||
|
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
|
||
|
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
|
||
|
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
|
||
|
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
|
||
|
|
||
|
// do not quantize relative position bias (T5)
|
||
|
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
||
|
|
||
|
enum ggml_type new_type;
|
||
|
void * new_data;
|
||
|
size_t new_size;
|
||
|
|
||
|
if (quantize) {
|
||
|
new_type = default_type;
|
||
|
|
||
|
// get more optimal quantization type based on the tensor shape, layer, etc.
|
||
|
if (!params->pure && ggml_is_quantized(default_type)) {
|
||
|
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
|
||
|
}
|
||
|
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
|
||
|
new_type = params->token_embedding_type;
|
||
|
}
|
||
|
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
|
||
|
new_type = params->output_tensor_type;
|
||
|
}
|
||
|
|
||
|
// If we've decided to quantize to the same type the tensor is already
|
||
|
// in then there's nothing to do.
|
||
|
quantize = tensor->type != new_type;
|
||
|
}
|
||
|
|
||
|
if (!quantize) {
|
||
|
new_type = tensor->type;
|
||
|
new_data = tensor->data;
|
||
|
new_size = ggml_nbytes(tensor);
|
||
|
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
||
|
} else {
|
||
|
const int64_t nelements = ggml_nelements(tensor);
|
||
|
|
||
|
const float * imatrix = nullptr;
|
||
|
if (imatrix_data) {
|
||
|
auto it = imatrix_data->find(tensor->name);
|
||
|
if (it == imatrix_data->end()) {
|
||
|
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
|
||
|
} else {
|
||
|
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
|
||
|
imatrix = it->second.data();
|
||
|
} else {
|
||
|
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
|
||
|
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
|
||
|
|
||
|
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
|
||
|
// this is a significant error and it may be good idea to abort the process if this happens,
|
||
|
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
|
||
|
// tok_embd should be ignored in this case, since it always causes this warning
|
||
|
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
|
||
|
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
|
||
|
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if ((new_type == GGML_TYPE_IQ2_XXS ||
|
||
|
new_type == GGML_TYPE_IQ2_XS ||
|
||
|
new_type == GGML_TYPE_IQ2_S ||
|
||
|
new_type == GGML_TYPE_IQ1_S ||
|
||
|
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
|
||
|
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
|
||
|
LLAMA_LOG_ERROR("\n\n============================================================\n");
|
||
|
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
|
||
|
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
|
||
|
LLAMA_LOG_ERROR("============================================================\n\n");
|
||
|
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
|
||
|
}
|
||
|
|
||
|
float * f32_data;
|
||
|
|
||
|
if (tensor->type == GGML_TYPE_F32) {
|
||
|
f32_data = (float *) tensor->data;
|
||
|
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
||
|
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
||
|
} else {
|
||
|
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
||
|
f32_data = (float *) f32_conv_buf.data();
|
||
|
}
|
||
|
|
||
|
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
|
||
|
fflush(stdout);
|
||
|
|
||
|
if (work.size() < (size_t)nelements * 4) {
|
||
|
work.resize(nelements * 4); // upper bound on size
|
||
|
}
|
||
|
new_data = work.data();
|
||
|
|
||
|
const int64_t n_per_row = tensor->ne[0];
|
||
|
const int64_t nrows = tensor->ne[1];
|
||
|
|
||
|
static const int64_t min_chunk_size = 32 * 512;
|
||
|
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
|
||
|
|
||
|
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
|
||
|
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
|
||
|
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
|
||
|
|
||
|
// quantize each expert separately since they have different importance matrices
|
||
|
new_size = 0;
|
||
|
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
|
||
|
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
|
||
|
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
|
||
|
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
|
||
|
|
||
|
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
||
|
}
|
||
|
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||
|
}
|
||
|
total_size_org += ggml_nbytes(tensor);
|
||
|
total_size_new += new_size;
|
||
|
|
||
|
// update the gguf meta data as we go
|
||
|
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
|
||
|
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size);
|
||
|
|
||
|
// write tensor data + padding
|
||
|
fout.write((const char *) new_data, new_size);
|
||
|
zeros(fout, GGML_PAD(new_size, align) - new_size);
|
||
|
}
|
||
|
close_ofstream();
|
||
|
|
||
|
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||
|
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||
|
|
||
|
if (qs.n_fallback > 0) {
|
||
|
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
|
||
|
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// interface implementation
|
||
|
//
|
||
|
|
||
|
struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||
|
struct llama_model_quantize_params result = {
|
||
|
/*.nthread =*/ 0,
|
||
|
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
|
||
|
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
|
||
|
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
|
||
|
/*.allow_requantize =*/ false,
|
||
|
/*.quantize_output_tensor =*/ true,
|
||
|
/*.only_copy =*/ false,
|
||
|
/*.pure =*/ false,
|
||
|
/*.keep_split =*/ false,
|
||
|
/*.imatrix =*/ nullptr,
|
||
|
/*.kv_overrides =*/ nullptr,
|
||
|
};
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
uint32_t llama_model_quantize(
|
||
|
const char * fname_inp,
|
||
|
const char * fname_out,
|
||
|
const llama_model_quantize_params * params) {
|
||
|
try {
|
||
|
llama_model_quantize_internal(fname_inp, fname_out, params);
|
||
|
} catch (const std::exception & err) {
|
||
|
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|