2023-08-23 16:29:09 +02:00
|
|
|
#!/usr/bin/env python3
|
2023-08-31 07:02:23 +02:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2023-04-17 17:28:55 +02:00
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import struct
|
|
|
|
import sys
|
2024-01-21 00:14:18 +01:00
|
|
|
from pathlib import Path
|
2023-08-31 07:02:23 +02:00
|
|
|
from typing import Any, BinaryIO, Sequence
|
2023-04-17 17:28:55 +02:00
|
|
|
|
2023-08-23 16:46:54 +02:00
|
|
|
import numpy as np
|
2023-04-17 17:28:55 +02:00
|
|
|
import torch
|
|
|
|
|
2023-12-16 18:58:46 +01:00
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
|
|
|
import gguf
|
2023-04-17 17:28:55 +02:00
|
|
|
|
2023-12-16 18:58:46 +01:00
|
|
|
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
|
2023-04-17 17:28:55 +02:00
|
|
|
|
|
|
|
|
2023-08-31 07:02:23 +02:00
|
|
|
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
|
2023-04-17 17:28:55 +02:00
|
|
|
fout.write(b"ggla"[::-1]) # magic (ggml lora)
|
|
|
|
fout.write(struct.pack("i", 1)) # file version
|
2023-04-25 23:33:08 +02:00
|
|
|
fout.write(struct.pack("i", params["r"]))
|
|
|
|
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
|
|
|
|
# but some models ship a float value instead
|
|
|
|
# let's convert to int, but fail if lossless conversion is not possible
|
2023-08-23 16:46:54 +02:00
|
|
|
assert (
|
|
|
|
int(params["lora_alpha"]) == params["lora_alpha"]
|
|
|
|
), "cannot convert float to int losslessly"
|
2023-04-25 23:33:08 +02:00
|
|
|
fout.write(struct.pack("i", int(params["lora_alpha"])))
|
2023-04-17 17:28:55 +02:00
|
|
|
|
|
|
|
|
2023-12-16 18:58:46 +01:00
|
|
|
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
|
2023-04-17 17:28:55 +02:00
|
|
|
sname = name.encode("utf-8")
|
|
|
|
fout.write(
|
|
|
|
struct.pack(
|
|
|
|
"iii",
|
|
|
|
len(shape),
|
|
|
|
len(sname),
|
2023-08-23 16:46:54 +02:00
|
|
|
NUMPY_TYPE_TO_FTYPE[data_type.name],
|
2023-04-17 17:28:55 +02:00
|
|
|
)
|
|
|
|
)
|
|
|
|
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
|
|
|
fout.write(sname)
|
|
|
|
fout.seek((fout.tell() + 31) & -32)
|
|
|
|
|
|
|
|
|
2023-12-29 15:50:29 +01:00
|
|
|
if __name__ == '__main__':
|
|
|
|
if len(sys.argv) < 2:
|
|
|
|
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
|
|
|
print(
|
|
|
|
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
|
|
|
)
|
|
|
|
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
|
|
|
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
|
|
|
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
|
|
|
|
2024-01-21 17:28:14 +01:00
|
|
|
if os.path.exists(input_model):
|
|
|
|
model = torch.load(input_model, map_location="cpu")
|
|
|
|
else:
|
|
|
|
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
|
|
|
|
# lazy import load_file only if lora is in safetensors format.
|
|
|
|
from safetensors.torch import load_file
|
|
|
|
model = load_file(input_model, device="cpu")
|
|
|
|
|
2023-12-29 15:50:29 +01:00
|
|
|
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
|
|
|
|
|
|
|
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
|
|
|
print(f"Error: unsupported architecture {arch_name}")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
|
|
|
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
|
|
|
|
|
|
|
with open(input_json, "r") as f:
|
|
|
|
params = json.load(f)
|
|
|
|
|
|
|
|
if params["peft_type"] != "LORA":
|
|
|
|
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
if params["fan_in_fan_out"] is True:
|
|
|
|
print("Error: param fan_in_fan_out is not supported")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
if params["bias"] is not None and params["bias"] != "none":
|
|
|
|
print("Error: param bias is not supported")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
# TODO: these seem to be layers that have been trained but without lora.
|
|
|
|
# doesn't seem widely used but eventually should be supported
|
|
|
|
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
|
|
|
print("Error: param modules_to_save is not supported")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
with open(output_path, "wb") as fout:
|
|
|
|
fout.truncate()
|
|
|
|
|
|
|
|
write_file_header(fout, params)
|
|
|
|
for k, v in model.items():
|
|
|
|
orig_k = k
|
|
|
|
if k.endswith(".default.weight"):
|
|
|
|
k = k.replace(".default.weight", ".weight")
|
|
|
|
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
|
|
|
continue
|
|
|
|
if k.endswith("lora_A.weight"):
|
|
|
|
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
|
|
|
v = v.float()
|
|
|
|
v = v.T
|
|
|
|
else:
|
2023-04-17 17:28:55 +02:00
|
|
|
v = v.float()
|
2023-12-29 15:50:29 +01:00
|
|
|
|
|
|
|
t = v.detach().numpy()
|
|
|
|
|
|
|
|
prefix = "base_model.model."
|
|
|
|
if k.startswith(prefix):
|
|
|
|
k = k[len(prefix) :]
|
|
|
|
|
|
|
|
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
|
|
|
if k.endswith(lora_suffixes):
|
|
|
|
suffix = k[-len(lora_suffixes[0]):]
|
|
|
|
k = k[: -len(lora_suffixes[0])]
|
|
|
|
else:
|
|
|
|
print(f"Error: unrecognized tensor name {orig_k}")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
tname = name_map.get_name(k)
|
|
|
|
if tname is None:
|
|
|
|
print(f"Error: could not map tensor name {orig_k}")
|
|
|
|
print(" Note: the arch parameter must be specified if the model is not llama")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
if suffix == ".lora_A.weight":
|
|
|
|
tname += ".weight.loraA"
|
|
|
|
elif suffix == ".lora_B.weight":
|
|
|
|
tname += ".weight.loraB"
|
|
|
|
else:
|
|
|
|
assert False
|
|
|
|
|
|
|
|
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
|
|
|
write_tensor_header(fout, tname, t.shape, t.dtype)
|
|
|
|
t.tofile(fout)
|
|
|
|
|
|
|
|
print(f"Converted {input_json} and {input_model} to {output_path}")
|