2023-11-26 19:33:07 +01:00
|
|
|
#include "common.h"
|
|
|
|
#include "llama.h"
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include <cstdio>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
struct ngram_data {
|
|
|
|
bool active = false;
|
|
|
|
|
|
|
|
llama_seq_id seq_id = -1;
|
|
|
|
|
|
|
|
std::vector<int> i_batch;
|
|
|
|
|
|
|
|
std::vector<llama_token> tokens;
|
|
|
|
};
|
|
|
|
|
|
|
|
// n-gram container
|
|
|
|
struct ngram_container {
|
|
|
|
ngram_container(int n_vocab, int N, int G) {
|
|
|
|
cnt.resize(n_vocab);
|
|
|
|
head.resize(n_vocab);
|
|
|
|
tokens.resize(n_vocab * G * (N - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
int n_total = 0;
|
|
|
|
|
|
|
|
std::vector<int> cnt;
|
|
|
|
std::vector<int> head;
|
|
|
|
|
|
|
|
// [n_vocab][G][N - 1]
|
|
|
|
// for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
|
|
|
|
std::vector<llama_token> tokens;
|
|
|
|
};
|
|
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
gpt_params params;
|
|
|
|
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int W = 15; // lookahead window
|
|
|
|
const int N = 5; // n-gram size
|
|
|
|
const int G = 15; // max verification n-grams
|
|
|
|
|
|
|
|
const bool dump_kv_cache = params.dump_kv_cache;
|
|
|
|
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
|
|
log_set_target(log_filename_generator("lookahead", "log"));
|
|
|
|
LOG_TEE("Log start\n");
|
|
|
|
log_dump_cmdline(argc, argv);
|
|
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
|
|
|
|
// init llama.cpp
|
2024-02-16 10:31:07 +01:00
|
|
|
llama_backend_init();
|
|
|
|
llama_numa_init(params.numa);
|
2023-11-26 19:33:07 +01:00
|
|
|
|
|
|
|
llama_model * model = NULL;
|
|
|
|
llama_context * ctx = NULL;
|
|
|
|
|
|
|
|
// load the target model
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
|
|
|
|
|
|
// Tokenize the prompt
|
|
|
|
std::vector<llama_token> inp;
|
|
|
|
std::vector<llama_token> all;
|
|
|
|
|
2024-04-09 19:44:08 +02:00
|
|
|
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
2023-11-26 19:33:07 +01:00
|
|
|
all = inp;
|
|
|
|
|
|
|
|
const int max_context_size = llama_n_ctx(ctx);
|
|
|
|
const int max_tokens_list_size = max_context_size - 4;
|
|
|
|
|
|
|
|
if ((int) inp.size() > max_tokens_list_size) {
|
|
|
|
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
|
|
|
|
for (auto id : inp) {
|
|
|
|
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
fflush(stderr);
|
|
|
|
|
|
|
|
const int n_input = inp.size();
|
|
|
|
|
|
|
|
const auto t_enc_start = ggml_time_us();
|
|
|
|
|
|
|
|
// eval the prompt
|
|
|
|
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
|
|
|
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
|
|
|
|
|
|
|
for (int s = 1; s < W + G + 1; ++s) {
|
|
|
|
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
const auto t_enc_end = ggml_time_us();
|
|
|
|
|
|
|
|
int n_predict = 0;
|
|
|
|
int n_accept = 0;
|
|
|
|
|
|
|
|
int n_past = inp.size();
|
|
|
|
|
|
|
|
llama_token id = 0;
|
|
|
|
|
|
|
|
// used to determine end of generation
|
|
|
|
bool has_eos = false;
|
|
|
|
|
|
|
|
// for each decoded batch, we have at most W + G + 1 distinct sequences:
|
|
|
|
// seq_id == 0 : the current input token
|
|
|
|
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
|
|
|
|
// seq_id [W + 1, W + G] : verification n-grams
|
|
|
|
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
|
|
|
|
|
|
|
// target model sampling context
|
|
|
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
|
|
|
|
|
|
|
// verification n-grams
|
|
|
|
std::vector<ngram_data> ngrams_cur(G);
|
|
|
|
|
|
|
|
// tokens for the past N - 1 Jacobi iterations
|
|
|
|
std::vector<llama_token> tokens_j_prev(W);
|
|
|
|
std::vector<std::vector<llama_token>> tokens_j(N - 1);
|
|
|
|
for (int j = 0; j < N - 1; j++) {
|
|
|
|
tokens_j[j].resize(W);
|
|
|
|
|
|
|
|
for (int i = 0; i < W; i++) {
|
|
|
|
// there are different ways to init these tokens
|
|
|
|
if (0) {
|
|
|
|
// initialize randomly from the prompt tokens
|
|
|
|
tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
|
|
|
|
} else {
|
|
|
|
// initialize with a sequence of increasing numbers
|
|
|
|
tokens_j[j][i] = 100 + i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<llama_seq_id> seq_id_look;
|
|
|
|
|
|
|
|
// the input token belongs both to all sequences
|
|
|
|
std::vector<llama_seq_id> seq_id_all(W + G + 1);
|
|
|
|
for (int i = 0; i < W + G + 1; i++) {
|
|
|
|
seq_id_all[i] = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// here we keep adding new n-grams as we go
|
|
|
|
ngram_container ngrams_observed(llama_n_vocab(model), N, G);
|
|
|
|
|
|
|
|
// debug
|
|
|
|
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
|
|
|
|
|
|
|
|
const auto t_dec_start = ggml_time_us();
|
|
|
|
|
|
|
|
// sample first token
|
|
|
|
{
|
|
|
|
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
|
|
|
|
|
|
|
|
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
|
|
|
|
|
|
|
{
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
|
|
|
|
|
|
printf("%s", token_str.c_str());
|
|
|
|
fflush(stdout);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
// debug
|
|
|
|
if (dump_kv_cache) {
|
|
|
|
llama_kv_cache_view_update(ctx, &kvc_view);
|
2024-05-22 19:04:20 +02:00
|
|
|
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
2023-11-26 19:33:07 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
|
|
|
//
|
|
|
|
// Example for W = 5, N = 4, G = 2:
|
|
|
|
// (I = input, L = lookahead, V = verification)
|
|
|
|
//
|
|
|
|
// Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
|
|
|
// T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0
|
|
|
|
// Info: I L L L L L L L L L L L L L L V V V V V V
|
|
|
|
// Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past)
|
|
|
|
// Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
|
|
|
|
// ---------------------------------------------------------------------
|
|
|
|
// Seq: 0
|
|
|
|
// 1 1 1
|
|
|
|
// 2 2 2 2
|
|
|
|
// 3 3 3 3 3
|
|
|
|
// 4 4 4 4 4 4
|
|
|
|
// 5 5 5 5 5 5 5
|
|
|
|
// 6 6 6 6
|
|
|
|
// 7 7 7 7
|
|
|
|
// ---------------------------------------------------------------------
|
|
|
|
// | | | | | | | | | | |
|
|
|
|
// V V V V V | | | | | |
|
|
|
|
// j_tokens | | | | | |
|
|
|
|
// V V V V V V
|
|
|
|
// id
|
|
|
|
{
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
|
|
|
|
// current token - first token of the first level
|
|
|
|
llama_batch_add(batch, id, n_past, seq_id_all, true);
|
|
|
|
|
|
|
|
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
|
|
|
|
{
|
|
|
|
const int g_cur = ngrams_observed.cnt[id];
|
|
|
|
|
|
|
|
ngrams_cur.resize(g_cur);
|
|
|
|
for (int g = 0; g < g_cur; g++) {
|
|
|
|
ngrams_cur[g].active = true;
|
|
|
|
ngrams_cur[g].tokens.resize(N);
|
|
|
|
ngrams_cur[g].i_batch.resize(N);
|
|
|
|
ngrams_cur[g].seq_id = W + 1 + g;
|
|
|
|
ngrams_cur[g].i_batch[0] = 0;
|
|
|
|
ngrams_cur[g].tokens [0] = id;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int j = 0; j < N - 1; j++) {
|
|
|
|
for (int g = 0; g < g_cur; g++) {
|
|
|
|
const int idx = id*(N - 1)*G + g*(N - 1);
|
|
|
|
|
|
|
|
const llama_token t = ngrams_observed.tokens[idx + j];
|
|
|
|
|
|
|
|
ngrams_cur[g].tokens [j + 1] = t;
|
|
|
|
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
|
|
|
|
|
|
|
|
llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fill the remaining W - 1 tokens for the first level
|
|
|
|
for (int i = 1; i < W; i++) {
|
|
|
|
seq_id_look.resize(W - i);
|
|
|
|
for (int j = 0; j < W - i; j++) {
|
|
|
|
seq_id_look[j] = i + j + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
// fill the rest of the levels
|
|
|
|
for (int j = 1; j < N - 1; j++) {
|
|
|
|
for (int i = 0; i < W; i++) {
|
|
|
|
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
|
|
fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int seq_id_best = 0;
|
|
|
|
|
|
|
|
for (int v = 0; v < N; ++v) {
|
|
|
|
int i_batch = 0;
|
|
|
|
|
|
|
|
// if no active ngrams are left, it means the sampled token does not pass the verification
|
|
|
|
if (v > 0) {
|
|
|
|
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
|
|
|
|
if (ngrams_cur[g].active) {
|
|
|
|
i_batch = ngrams_cur[g].i_batch[v];
|
|
|
|
seq_id_best = ngrams_cur[g].seq_id;
|
|
|
|
|
|
|
|
++n_accept;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// no more matches -> create a new batch
|
|
|
|
if (i_batch == 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// sample the next token
|
|
|
|
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
|
|
|
|
|
|
|
|
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
|
|
|
|
|
|
|
// print
|
|
|
|
{
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
|
|
|
|
|
|
if (v == 0) {
|
|
|
|
printf("%s", token_str.c_str());
|
|
|
|
} else {
|
|
|
|
// print light cyan
|
|
|
|
printf("\033[0;96m%s\033[0m", token_str.c_str());
|
|
|
|
}
|
|
|
|
fflush(stdout);
|
|
|
|
|
2024-04-21 13:50:41 +02:00
|
|
|
if (llama_token_is_eog(model, id)) {
|
2023-11-26 19:33:07 +01:00
|
|
|
has_eos = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
all.push_back(id);
|
|
|
|
}
|
|
|
|
|
|
|
|
++n_predict;
|
|
|
|
++n_past;
|
|
|
|
|
2023-11-26 20:51:46 +01:00
|
|
|
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
2023-11-26 19:33:07 +01:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// verify across active n-grams
|
|
|
|
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
|
|
|
|
if (ngrams_cur[g].active) {
|
|
|
|
if (v == N - 1) {
|
|
|
|
ngrams_cur[g].active = false;
|
|
|
|
} else {
|
|
|
|
if (id != ngrams_cur[g].tokens[v + 1]) {
|
|
|
|
ngrams_cur[g].active = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// print known n-grams starting with token id (debug)
|
|
|
|
if (0 && v == 0) {
|
|
|
|
if (ngrams_observed.cnt[id] > 0) {
|
|
|
|
printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
|
|
|
|
printf(" - ngram %2d: ", i);
|
|
|
|
|
|
|
|
const int idx = id*(N - 1)*G + i*(N - 1);
|
|
|
|
|
|
|
|
for (int j = 0; j < N - 1; j++) {
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
|
|
|
|
|
|
|
printf("%s", token_str.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// update lookahead tokens
|
|
|
|
{
|
|
|
|
for (int i = 0; i < W; i++) {
|
|
|
|
tokens_j_prev[i] = tokens_j[0][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int j = 0; j < N - 2; j++) {
|
|
|
|
tokens_j[j] = tokens_j[j + 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (v == 0) {
|
|
|
|
// sample from the last level
|
|
|
|
for (int i = 0; i < W; i++) {
|
|
|
|
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int i = 0; i < W; i++) {
|
|
|
|
// there are different ways to init these tokens
|
|
|
|
if (0) {
|
|
|
|
// random init
|
|
|
|
tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
|
|
|
|
} else {
|
|
|
|
// init from the previous level
|
|
|
|
tokens_j[N - 2][i] = tokens_j[0][i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// update observed ngrams
|
|
|
|
if (v == 0) {
|
|
|
|
// the first token of the n-gram is determined by the index in the container so it is not stored
|
|
|
|
std::vector<llama_token> ngram(N - 1);
|
|
|
|
|
|
|
|
// n-gram generation
|
|
|
|
// ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
|
|
|
|
for (int f = 0; f < W; ++f) {
|
|
|
|
const int ft = tokens_j_prev[f]; // first token of the n-gram
|
|
|
|
|
|
|
|
for (int j = 0; j < N - 1; ++j) {
|
|
|
|
ngram[j] = tokens_j[j][f];
|
|
|
|
}
|
|
|
|
|
|
|
|
// filter-out repeating n-grams
|
|
|
|
{
|
|
|
|
bool is_unique = true;
|
|
|
|
|
|
|
|
for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
|
|
|
|
const int idx = ft*(N - 1)*G + k*(N - 1);
|
|
|
|
|
|
|
|
bool is_match = true;
|
|
|
|
for (int j = 0; j < N - 1; ++j) {
|
|
|
|
if (ngrams_observed.tokens[idx + j] != ngram[j]) {
|
|
|
|
is_match = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_match) {
|
|
|
|
is_unique = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!is_unique) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const int head = ngrams_observed.head[ft];
|
|
|
|
const int idx = ft*(N - 1)*G + head*(N - 1);
|
|
|
|
|
|
|
|
for (int i = 0; i < N - 1; i++) {
|
|
|
|
ngrams_observed.tokens[idx + i] = ngram[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
|
|
|
|
ngrams_observed.head[ft] = (head + 1) % G;
|
|
|
|
|
|
|
|
ngrams_observed.n_total++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-11-26 20:51:46 +01:00
|
|
|
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
2023-11-26 19:33:07 +01:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// KV cache management
|
|
|
|
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
|
|
|
|
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
|
|
|
|
|
|
|
|
if (seq_id_best != 0) {
|
|
|
|
// if a verification token matched, we keep the best sequence and remove the rest
|
|
|
|
// this leads to some KV cache fragmentation
|
|
|
|
llama_kv_cache_seq_keep(ctx, seq_id_best);
|
|
|
|
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
|
|
|
|
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
|
|
|
|
|
|
|
|
for (int s = 1; s < W + G + 1; ++s) {
|
|
|
|
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto t_dec_end = ggml_time_us();
|
|
|
|
|
|
|
|
LOG_TEE("\n\n");
|
|
|
|
|
|
|
|
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
|
|
|
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
|
|
|
|
|
|
|
LOG_TEE("\n");
|
|
|
|
LOG_TEE("W = %2d\n", W);
|
|
|
|
LOG_TEE("N = %2d\n", N);
|
|
|
|
LOG_TEE("G = %2d\n", G);
|
|
|
|
LOG_TEE("\n");
|
|
|
|
LOG_TEE("n_predict = %d\n", n_predict);
|
|
|
|
LOG_TEE("n_accept = %d\n", n_accept);
|
|
|
|
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
|
|
|
|
llama_kv_cache_view_free(&kvc_view);
|
|
|
|
llama_sampling_free(ctx_sampling);
|
|
|
|
|
|
|
|
llama_batch_free(batch);
|
|
|
|
|
|
|
|
llama_free(ctx);
|
|
|
|
llama_free_model(model);
|
|
|
|
|
|
|
|
llama_backend_free();
|
|
|
|
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|