2024-11-26 13:36:48 +01:00
# GLMV-EDGE
Currently this implementation supports [glm-edge-v-2b ](https://huggingface.co/THUDM/glm-edge-v-2b ) and [glm-edge-v-5b ](https://huggingface.co/THUDM/glm-edge-v-5b ).
## Usage
Build with cmake or run `make llama-llava-cli` to build it.
After building, run: `./llama-llava-cli` to see the usage. For example:
```sh
./llama-llava-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf --image img_path/image.jpg -p "< |system|>\n system prompt < image > < |user|>\n prompt < |assistant|>\n"
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
## GGUF conversion
1. Clone a GLMV-EDGE model ([2B](https://huggingface.co/THUDM/glm-edge-v-2b) or [5B ](https://huggingface.co/THUDM/glm-edge-v-5b )). For example:
```sh
git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
```
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
```sh
python ./examples/llava/glmedge-surgery.py -m ../model_path
```
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
```sh
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
```
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
```sh
2024-11-29 07:05:05 +01:00
python convert_hf_to_gguf.py ../model_path
2024-11-26 13:36:48 +01:00
```
2024-11-29 07:05:05 +01:00
Now both the LLM part and the image encoder are in the `model_path` directory.