mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 21:37:19 +01:00
1.6 KiB
1.6 KiB
GLMV-EDGE
Currently this implementation supports glm-edge-v-2b and glm-edge-v-5b.
Usage
Build with cmake or run make llama-llava-cli
to build it.
After building, run: ./llama-llava-cli
to see the usage. For example:
./llama-llava-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf --image img_path/image.jpg -p "<|system|>\n system prompt <image><|user|>\n prompt <|assistant|>\n"
note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1
to the command to do so.
note: For GPU offloading ensure to use the -ngl
flag just like usual
GGUF conversion
git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
- Use
glmedge-surgery.py
to split the GLMV-EDGE model to LLM and multimodel projector constituents:
python ./examples/llava/glmedge-surgery.py -m ../model_path
- Use
glmedge-convert-image-encoder-to-gguf.py
to convert the GLMV-EDGE image encoder to GGUF:
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
- Use
examples/convert_hf_to_gguf.py
to convert the LLM part of GLMV-EDGE to GGUF:
python convert_hf_to_gguf.py ../model_path
Now both the LLM part and the image encoder are in the model_path
directory.