llama.cpp/convert-llama-h5-to-gguf.py

251 lines
7.8 KiB
Python
Raw Normal View History

2023-07-29 11:20:05 +02:00
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
import gguf
import gguf_tensor_map as tmap
import os
2023-07-29 11:20:05 +02:00
import sys
import struct
import json
import numpy as np
from typing import Any, List
2023-07-29 11:20:05 +02:00
from pathlib import Path
from transformers import AutoModelForCausalLM
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
2023-07-29 12:31:07 +02:00
2023-07-29 11:20:05 +02:00
def permute(weights: NDArray, n_head: int) -> NDArray:
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
2023-07-29 12:31:07 +02:00
2023-07-29 11:20:05 +02:00
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"
last_dir = os.path.basename(os.path.normpath(dir_model))
2023-07-29 11:20:05 +02:00
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
2023-07-29 11:20:05 +02:00
2023-07-31 03:02:00 +02:00
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
sys.exit()
2023-07-29 11:20:05 +02:00
2023-07-29 12:31:07 +02:00
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
2023-07-29 11:20:05 +02:00
list_vars = model.state_dict()
gguf_writer = gguf.GGUFWriter.open(fname_out)
print("gguf: get model metadata")
2023-07-29 11:20:05 +02:00
llm_arch = "llama"
head_count = hparams["num_attention_heads"]
block_count = hparams["num_hidden_layers"]
2023-07-29 11:20:05 +02:00
gguf_writer.add_name("llama2-7b")
gguf_writer.add_description("gguf test model")
gguf_writer.add_architecture(llm_arch)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_layer_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(llm_arch, head_count)
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
2023-07-29 11:20:05 +02:00
# TOKENIZATION
print("gguf: get tokenizer metadata")
2023-07-29 21:38:01 +02:00
2023-07-29 11:20:05 +02:00
tokens: List[str] = []
scores: List[float] = []
2023-07-29 12:31:07 +02:00
if Path(dir_model + "/tokenizer.model").is_file():
2023-07-29 21:38:01 +02:00
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab and scores")
2023-07-29 12:31:07 +02:00
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
2023-07-29 11:20:05 +02:00
for i in range(tokenizer.vocab_size()):
text: bytes
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
if tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
raise Exception(f"Invalid token: {piece}")
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
score: float = tokenizer.get_score(i)
2023-07-29 16:47:00 +02:00
tokens.append(text)
2023-07-29 12:31:07 +02:00
scores.append(score)
2023-07-29 11:20:05 +02:00
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
if Path(dir_model + "/tokenizer.json").is_file():
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
# find special token ids
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]["content"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]["content"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]["content"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]["content"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]["content"]:
gguf_writer.add_pad_token_id(key["id"])
2023-07-29 11:20:05 +02:00
# TENSORS
tensor_map = tmap.get_tensor_map(block_count)
2023-07-29 11:20:05 +02:00
# tensor info
print("gguf: get tensor metadata")
2023-07-29 11:20:05 +02:00
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
# permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
data = permute(data,head_count)
2023-07-29 11:20:05 +02:00
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
2023-07-29 11:20:05 +02:00
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
2023-07-29 11:20:05 +02:00
2023-07-29 16:47:00 +02:00
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
ftype_cur = 1
else:
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.add_tensor_info(name, data)
2023-07-29 11:20:05 +02:00
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensor metadata")
gguf_writer.write_ti_data_to_file()
2023-07-29 11:20:05 +02:00
# tensor data
print("gguf: write tensor data")
2023-07-29 11:20:05 +02:00
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
2023-07-29 12:31:07 +02:00
# permute these
2023-07-29 11:20:05 +02:00
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
data = permute(data, head_count)
2023-07-29 11:20:05 +02:00
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
ftype_cur = 1
else:
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor_to_file(data)
2023-07-29 11:20:05 +02:00
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'" )
2023-07-29 11:20:05 +02:00
print("")