mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-06 02:48:57 +01:00
258 lines
9.3 KiB
Python
258 lines
9.3 KiB
Python
|
"""TODOs
|
||
|
1. Implement writing tensor data with alignment.
|
||
|
2. Implement writers for known architectures, LLaMA in particular.
|
||
|
3. Add docstrings from the format specs.
|
||
|
4. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
||
|
"""
|
||
|
|
||
|
import struct
|
||
|
from enum import IntEnum
|
||
|
from typing import List, Any
|
||
|
import constants
|
||
|
|
||
|
|
||
|
class GGMLQuantizationType(IntEnum):
|
||
|
F32 = 0
|
||
|
F16 = 1
|
||
|
QR_0 = 2
|
||
|
Q4_1 = 3
|
||
|
# Q4_2 = 4 # support has been removed
|
||
|
# Q4_3 = 5 # support has been removed
|
||
|
Q5_0 = 6
|
||
|
Q5_1 = 7
|
||
|
Q8_0 = 8
|
||
|
Q8_1 = 9
|
||
|
Q2_K = 10
|
||
|
Q3_K = 11
|
||
|
Q4_K = 12
|
||
|
Q5_K = 13
|
||
|
Q6_K = 14
|
||
|
Q8_K = 15
|
||
|
|
||
|
|
||
|
class GGUFValueType(IntEnum):
|
||
|
UINT8 = 0
|
||
|
INT8 = 1
|
||
|
UINT16 = 2
|
||
|
INT16 = 3
|
||
|
UINT32 = 4
|
||
|
INT32 = 5
|
||
|
FLOAT32 = 6
|
||
|
BOOL = 7
|
||
|
STRING = 8
|
||
|
ARRAY = 9
|
||
|
|
||
|
@staticmethod
|
||
|
def get_type(value):
|
||
|
if isinstance(value, str):
|
||
|
return GGUFValueType.STRING
|
||
|
elif isinstance(value, list):
|
||
|
return GGUFValueType.ARRAY
|
||
|
elif isinstance(value, float):
|
||
|
return GGUFValueType.FLOAT32
|
||
|
elif isinstance(value, bool):
|
||
|
return GGUFValueType.BOOL
|
||
|
else:
|
||
|
return GGUFValueType.INT32
|
||
|
|
||
|
|
||
|
class GGUFWriter:
|
||
|
def __init__(self, buffered_writer):
|
||
|
self.buffered_writer = buffered_writer
|
||
|
|
||
|
def write_header(self, tensor_count: int, metadata_kv_count: int):
|
||
|
self.buffered_writer.write(struct.pack("<I", constants.GGUF_MAGIC))
|
||
|
self.buffered_writer.write(struct.pack("<I", constants.GGUF_VERSION))
|
||
|
self.buffered_writer.write(struct.pack("<I", tensor_count))
|
||
|
self.buffered_writer.write(struct.pack("<I", metadata_kv_count))
|
||
|
|
||
|
@classmethod
|
||
|
def open(cls, path: str) -> "GGUFWriter":
|
||
|
f = open(path, "wb")
|
||
|
return cls(f)
|
||
|
|
||
|
def write_key(self, key: str, value_type: GGUFValueType):
|
||
|
encoded_key = key.encode("utf8")
|
||
|
self.buffered_writer.write(struct.pack("<I", len(encoded_key)))
|
||
|
self.buffered_writer.write(encoded_key)
|
||
|
self.buffered_writer.write(struct.pack("<I", value_type))
|
||
|
|
||
|
def write_uint8(self, key: str, value: int):
|
||
|
self.write_key(key, GGUFValueType.UINT8)
|
||
|
self.buffered_writer.write(struct.pack("<B", value))
|
||
|
|
||
|
def write_int8(self, key: str, value: int):
|
||
|
self.write_key(key, GGUFValueType.INT8)
|
||
|
self.buffered_writer.write(struct.pack("<b", value))
|
||
|
|
||
|
def write_uint16(self, key: str, value: int):
|
||
|
self.write_key(key, GGUFValueType.UINT16)
|
||
|
self.buffered_writer.write(struct.pack("<H", value))
|
||
|
|
||
|
def write_int16(self, key: str, value: int):
|
||
|
self.write_key(key, GGUFValueType.INT16)
|
||
|
self.buffered_writer.write(struct.pack("<h", value))
|
||
|
|
||
|
def write_uint32(self, key: str, value: int):
|
||
|
self.write_key(key, GGUFValueType.UINT32)
|
||
|
self.buffered_writer.write(struct.pack("<I", value))
|
||
|
|
||
|
def write_int32(self, key: str, value: int):
|
||
|
self.write_key(key, GGUFValueType.INT32)
|
||
|
self.buffered_writer.write(struct.pack("<i", value))
|
||
|
|
||
|
def write_float32(self, key: str, value: float):
|
||
|
self.write_key(key, GGUFValueType.FLOAT32)
|
||
|
self.buffered_writer.write(struct.pack("<f", value))
|
||
|
|
||
|
def write_bool(self, key: str, value: bool):
|
||
|
self.write_key(key, GGUFValueType.BOOL)
|
||
|
self.buffered_writer.write(struct.pack("<?", value))
|
||
|
|
||
|
def write_string(self, key: str, value: str):
|
||
|
self.write_key(key, GGUFValueType.STRING)
|
||
|
encoded_string = value.encode('utf-8')
|
||
|
self.buffered_writer.write(struct.pack("<I", len(encoded_string)))
|
||
|
self.buffered_writer.write(encoded_string)
|
||
|
|
||
|
def write_array(self, key: str, value: list):
|
||
|
if not isinstance(value, list):
|
||
|
raise ValueError("Value must be a list for array type")
|
||
|
|
||
|
self.write_key(key, GGUFValueType.ARRAY)
|
||
|
|
||
|
self.buffered_writer.write(struct.pack("<I", len(value)))
|
||
|
|
||
|
for item in value:
|
||
|
self.write_value(item)
|
||
|
|
||
|
def write_value(self: str, value: Any):
|
||
|
value_type = GGUFValueType.get_type(value)
|
||
|
self.buffered_writer.write(struct.pack("<I", value_type))
|
||
|
|
||
|
if value_type == GGUFValueType.UINT8:
|
||
|
self.buffered_writer.write(struct.pack("<B", value))
|
||
|
elif value_type == GGUFValueType.INT8:
|
||
|
self.buffered_writer.write(struct.pack("<b", value))
|
||
|
elif value_type == GGUFValueType.UINT16:
|
||
|
self.buffered_writer.write(struct.pack("<H", value))
|
||
|
elif value_type == GGUFValueType.INT16:
|
||
|
self.buffered_writer.write(struct.pack("<h", value))
|
||
|
elif value_type == GGUFValueType.UINT32:
|
||
|
self.buffered_writer.write(struct.pack("<I", value))
|
||
|
elif value_type == GGUFValueType.INT32:
|
||
|
self.buffered_writer.write(struct.pack("<i", value))
|
||
|
elif value_type == GGUFValueType.FLOAT32:
|
||
|
self.buffered_writer.write(struct.pack("<f", value))
|
||
|
elif value_type == GGUFValueType.BOOL:
|
||
|
self.buffered_writer.write(struct.pack("?", value))
|
||
|
elif value_type == GGUFValueType.STRING:
|
||
|
encoded_value = value.encode("utf8")
|
||
|
self.buffered_writer.write(struct.pack("<I", len(encoded_value)))
|
||
|
self.buffered_writer.write(encoded_value)
|
||
|
elif value_type == GGUFValueType.ARRAY:
|
||
|
self.buffered_writer.write(struct.pack("<I", len(value)))
|
||
|
for item in value:
|
||
|
self.write_value(item)
|
||
|
else:
|
||
|
raise ValueError("Invalid GGUF metadata value type")
|
||
|
|
||
|
def flush(self):
|
||
|
self.buffered_writer.flush()
|
||
|
|
||
|
def close(self):
|
||
|
self.buffered_writer.close()
|
||
|
|
||
|
def write_architecture(self, architecture: str):
|
||
|
self.write_string(constants.KEY_GENERAL_ARCHITECTURE,
|
||
|
architecture)
|
||
|
|
||
|
def write_author(self, author: str):
|
||
|
self.write_string(constants.KEY_GENERAL_AUTHOR, author)
|
||
|
|
||
|
def write_url(self, url: str):
|
||
|
self.write_string(constants.KEY_GENERAL_URL, url)
|
||
|
|
||
|
def write_description(self, description: str):
|
||
|
self.write_string(constants.KEY_GENERAL_DESCRIPTION, description)
|
||
|
|
||
|
def write_file_type(self, file_type: str):
|
||
|
self.write_string(constants.KEY_GENERAL_FILE_TYPE, file_type)
|
||
|
|
||
|
def write_source_url(self, url: str):
|
||
|
self.write_string(constants.KEY_GENERAL_SOURCE_URL, url)
|
||
|
|
||
|
def write_source_hf_repo(self, repo: str):
|
||
|
self.write_string(constants.KEY_GENERAL_SOURCE_HF_REPO, repo)
|
||
|
|
||
|
def write_name(self, name: str):
|
||
|
self.write_string(constants.KEY_GENERAL_NAME, name)
|
||
|
|
||
|
def write_quantization_version(self, quantization_version: GGMLQuantizationType):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
|
||
|
|
||
|
def write_context_length(self, llm: str, length: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
|
||
|
|
||
|
def write_embedding_length(self, llm: str, length: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
|
||
|
|
||
|
def write_layer_count(self, llm: str, length: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_LLM_LAYER_COUNT.format(llm=llm), length)
|
||
|
|
||
|
def write_feed_forward_length(self, llm: str, length: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
|
||
|
|
||
|
def write_parallel_residual(self, llm: str, use: bool):
|
||
|
self.write_bool(
|
||
|
constants.KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
|
||
|
|
||
|
def write_tensor_data_layout(self, llm: str, layout: str):
|
||
|
self.write_string(
|
||
|
constants.KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
|
||
|
|
||
|
def write_head_count(self, llm: str, count: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
|
||
|
|
||
|
def write_head_count_kv(self, llm: str, count: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
|
||
|
|
||
|
def write_max_alibi_bias(self, llm: str, bias: float):
|
||
|
self.write_float32(
|
||
|
constants.KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
|
||
|
|
||
|
def write_clamp_kqv(self, llm: str, value: float):
|
||
|
self.write_float32(
|
||
|
constants.KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
|
||
|
|
||
|
def write_rope_dimension_count(self, llm: str, count: int):
|
||
|
self.write_uint32(
|
||
|
constants.KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
|
||
|
|
||
|
def write_rope_scale(self, llm: str, value: float):
|
||
|
self.write_float32(constants.KEY_ROPE_SCALE.format(llm=llm), value)
|
||
|
|
||
|
|
||
|
# Example usage:
|
||
|
if __name__ == "__main__":
|
||
|
# Example usage with a file
|
||
|
gguf_writer = GGUFWriter.open("example.gguf")
|
||
|
gguf_writer.write_header(0, 3)
|
||
|
|
||
|
gguf_writer.write_architecture("llama")
|
||
|
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
||
|
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||
|
# Write an array of integers
|
||
|
#gguf_writer.write_array("simple_array", [1, 2, 3, 4])
|
||
|
# Write a nested array
|
||
|
#gguf_writer.write_array("nested", [1, "nested", [2, 3]])
|
||
|
|
||
|
gguf_writer.close()
|