2023-10-11 13:35:46 -06:00
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "llama.h"
|
|
|
|
|
|
|
|
#include <string>
|
2024-04-24 11:08:36 +02:00
|
|
|
#include <vector>
|
2023-10-11 13:35:46 -06:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
enum gpt_sampler_type {
|
|
|
|
GPT_SAMPLER_TYPE_NONE = 0,
|
|
|
|
GPT_SAMPLER_TYPE_TOP_K = 1,
|
|
|
|
GPT_SAMPLER_TYPE_TOP_P = 2,
|
|
|
|
GPT_SAMPLER_TYPE_MIN_P = 3,
|
|
|
|
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
|
|
|
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
|
|
|
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
2024-02-11 13:43:31 +00:00
|
|
|
};
|
|
|
|
|
2023-10-11 13:35:46 -06:00
|
|
|
// sampling parameters
|
2024-09-07 15:16:19 +03:00
|
|
|
struct gpt_sampler_params {
|
|
|
|
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
|
|
|
|
|
|
|
int32_t n_prev = 64; // number of previous tokens to remember
|
|
|
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
|
|
|
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
|
|
|
int32_t top_k = 40; // <= 0 to use vocab size
|
|
|
|
float top_p = 0.95f; // 1.0 = disabled
|
|
|
|
float min_p = 0.05f; // 0.0 = disabled
|
|
|
|
float tfs_z = 1.00f; // 1.0 = disabled
|
|
|
|
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
|
|
|
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
|
|
|
float dynatemp_range = 0.00f; // 0.0 = disabled
|
|
|
|
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
|
|
|
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
|
|
|
float penalty_repeat = 1.00f; // 1.0 = disabled
|
|
|
|
float penalty_freq = 0.00f; // 0.0 = disabled
|
|
|
|
float penalty_present = 0.00f; // 0.0 = disabled
|
|
|
|
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
|
|
|
float mirostat_tau = 5.00f; // target entropy
|
|
|
|
float mirostat_eta = 0.10f; // learning rate
|
|
|
|
bool penalize_nl = false; // consider newlines as a repeatable token
|
|
|
|
bool ignore_eos = false;
|
|
|
|
|
|
|
|
std::vector<enum gpt_sampler_type> samplers = {
|
|
|
|
GPT_SAMPLER_TYPE_TOP_K,
|
|
|
|
GPT_SAMPLER_TYPE_TFS_Z,
|
|
|
|
GPT_SAMPLER_TYPE_TYPICAL_P,
|
|
|
|
GPT_SAMPLER_TYPE_TOP_P,
|
|
|
|
GPT_SAMPLER_TYPE_MIN_P,
|
|
|
|
GPT_SAMPLER_TYPE_TEMPERATURE
|
2024-02-11 13:43:31 +00:00
|
|
|
};
|
2023-10-11 13:35:46 -06:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
std::string grammar; // optional BNF-like grammar to constrain sampling
|
2023-10-11 13:35:46 -06:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
2023-10-18 16:21:57 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// print the parameters into a string
|
|
|
|
std::string print() const;
|
|
|
|
};
|
2023-10-18 16:21:57 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// gpt_sampler extends llama_sampler with additional functionality:
|
|
|
|
//
|
|
|
|
// - grammar support
|
|
|
|
// - custom sampler logic based on the parameters
|
|
|
|
// - history of the last accepted tokens
|
|
|
|
// - performance metrics
|
|
|
|
//
|
|
|
|
// This goal is to have a common implementation of the sampling logic shared across the examples.
|
|
|
|
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
|
|
|
|
// complex (top-k, top-p, etc).
|
|
|
|
//
|
|
|
|
// Another example is related to the grammar. In general, the grammar constraints applied on the full
|
|
|
|
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
|
|
|
|
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
|
|
|
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
|
|
|
//
|
|
|
|
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
|
|
|
|
// be moved into the core llama library.
|
|
|
|
//
|
|
|
|
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
|
|
|
|
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
|
|
|
//
|
|
|
|
// TODO: measure grammar performance
|
|
|
|
//
|
2024-04-24 11:08:36 +02:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
struct gpt_sampler;
|
2023-10-11 13:35:46 -06:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// llama_sampler API overloads
|
2023-10-11 13:35:46 -06:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
|
2023-10-18 16:21:57 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
void gpt_sampler_free(struct gpt_sampler * gsmpl);
|
2023-10-18 16:21:57 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
|
|
|
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
|
|
|
|
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
|
|
|
|
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
|
2023-10-18 16:21:57 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// arguments can be nullptr to skip printing
|
|
|
|
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
|
2024-04-24 11:08:36 +02:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// extended sampling implementation:
|
|
|
|
//
|
|
|
|
// - set logits
|
|
|
|
// - apply the configured sampler chain
|
|
|
|
// - check if the token fits the grammar (if any)
|
|
|
|
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
|
|
|
|
//
|
|
|
|
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
|
|
|
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
|
|
|
//
|
|
|
|
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
2023-10-11 13:35:46 -06:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// helpers
|
2023-10-20 21:07:23 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// access the internal list of current candidate tokens
|
|
|
|
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
|
2023-10-20 21:07:23 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// get the last accepted token
|
|
|
|
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
|
2023-12-05 15:05:51 +05:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// print the sampler chain into a string
|
|
|
|
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
|
2023-10-20 21:07:23 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
// get a string representation of the last accepted tokens
|
|
|
|
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
|
2024-05-22 20:04:20 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
|
|
|
|
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
|
2024-05-22 20:04:20 +03:00
|
|
|
|
2024-09-07 15:16:19 +03:00
|
|
|
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
|
|
|
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|