mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-28 04:47:04 +01:00
Merge branch 'master' into gg/flash-attn
This commit is contained in:
commit
02a645e7b7
37
.devops/nix/docker.nix
Normal file
37
.devops/nix/docker.nix
Normal file
@ -0,0 +1,37 @@
|
||||
{
|
||||
lib,
|
||||
dockerTools,
|
||||
buildEnv,
|
||||
llama-cpp,
|
||||
interactive ? true,
|
||||
coreutils,
|
||||
}:
|
||||
|
||||
# A tar that can be fed into `docker load`:
|
||||
#
|
||||
# $ nix build .#llamaPackages.docker
|
||||
# $ docker load < result
|
||||
|
||||
# For details and variations cf.
|
||||
# - https://nixos.org/manual/nixpkgs/unstable/#ssec-pkgs-dockerTools-buildLayeredImage
|
||||
# - https://discourse.nixos.org/t/a-faster-dockertools-buildimage-prototype/16922
|
||||
# - https://nixery.dev/
|
||||
|
||||
# Approximate (compressed) sizes, at the time of writing, are:
|
||||
#
|
||||
# .#llamaPackages.docker: 125M;
|
||||
# .#llamaPackagesCuda.docker: 537M;
|
||||
# .#legacyPackages.aarch64-linux.llamaPackagesXavier.docker: 415M.
|
||||
|
||||
dockerTools.buildLayeredImage {
|
||||
name = llama-cpp.pname;
|
||||
tag = "latest";
|
||||
|
||||
contents =
|
||||
[ llama-cpp ]
|
||||
++ lib.optionals interactive [
|
||||
coreutils
|
||||
dockerTools.binSh
|
||||
dockerTools.caCertificates
|
||||
];
|
||||
}
|
@ -255,11 +255,11 @@ effectiveStdenv.mkDerivation (
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals (useCuda || useOpenCL || useVulkan) lib.platforms.darwin;
|
||||
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
|
||||
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin) || (useVulkan && effectiveStdenv.isDarwin);
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
|
@ -12,5 +12,8 @@ lib.makeScope newScope (
|
||||
self: {
|
||||
inherit llamaVersion;
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
sif = self.callPackage ./sif.nix { };
|
||||
}
|
||||
)
|
||||
|
27
.devops/nix/sif.nix
Normal file
27
.devops/nix/sif.nix
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
lib,
|
||||
singularity-tools,
|
||||
llama-cpp,
|
||||
bashInteractive,
|
||||
interactive ? false,
|
||||
}:
|
||||
|
||||
let
|
||||
optionalInt = cond: x: if cond then x else 0;
|
||||
in
|
||||
singularity-tools.buildImage rec {
|
||||
inherit (llama-cpp) name;
|
||||
contents = [ llama-cpp ] ++ lib.optionals interactive [ bashInteractive ];
|
||||
|
||||
# These are excessive (but safe) for most variants. Building singularity
|
||||
# images requires superuser privileges, so we build them inside a VM in a
|
||||
# writable image of pre-determined size.
|
||||
#
|
||||
# ROCm is currently affected by https://github.com/NixOS/nixpkgs/issues/276846
|
||||
#
|
||||
# Expected image sizes:
|
||||
# - cpu/blas: 150M,
|
||||
# - cuda, all gencodes: 560M,
|
||||
diskSize = 4096 + optionalInt llama-cpp.useRocm 16384;
|
||||
memSize = diskSize;
|
||||
}
|
2
.github/ISSUE_TEMPLATE/bug.md
vendored
2
.github/ISSUE_TEMPLATE/bug.md
vendored
@ -7,3 +7,5 @@ assignees: ''
|
||||
---
|
||||
|
||||
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
|
||||
|
||||
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).
|
||||
|
25
.github/workflows/build.yml
vendored
25
.github/workflows/build.yml
vendored
@ -145,6 +145,28 @@ jobs:
|
||||
cd build
|
||||
ctest -L main --verbose
|
||||
|
||||
ubuntu-22-cmake-vulkan:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libvulkan-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_VULKAN=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
@ -669,8 +691,7 @@ jobs:
|
||||
run: |
|
||||
cd examples/llama.android
|
||||
|
||||
# Skip armeabi-v7a for now (https://github.com/llvm/llvm-project/issues/65820).
|
||||
./gradlew build --no-daemon -Pskip-armeabi-v7a
|
||||
./gradlew build --no-daemon
|
||||
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
|
7
.github/workflows/nix-ci-aarch64.yml
vendored
7
.github/workflows/nix-ci-aarch64.yml
vendored
@ -19,7 +19,6 @@ on:
|
||||
|
||||
jobs:
|
||||
nix-build-aarch64:
|
||||
if: ${{ vars.CACHIX_NAME != '' }}
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
@ -37,8 +36,8 @@ jobs:
|
||||
extra-conf: |
|
||||
extra-platforms = aarch64-linux
|
||||
extra-system-features = nixos-test kvm
|
||||
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
@ -46,7 +45,7 @@ jobs:
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: ${{ vars.CACHIX_NAME }}
|
||||
name: llama-cpp
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
|
11
.github/workflows/nix-ci.yml
vendored
11
.github/workflows/nix-ci.yml
vendored
@ -23,8 +23,8 @@ jobs:
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
@ -37,7 +37,6 @@ jobs:
|
||||
--flake
|
||||
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
||||
nix-build:
|
||||
if: ${{ vars.CACHIX_NAME != '' }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
@ -51,8 +50,8 @@ jobs:
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
@ -60,7 +59,7 @@ jobs:
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: ${{ vars.CACHIX_NAME }}
|
||||
name: llama-cpp
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
|
@ -3,12 +3,14 @@ name: Python check requirements.txt
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- '.github/workflows/python-check-requirements.yml'
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/python-check-requirements.yml'
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
@ -26,4 +28,4 @@ jobs:
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Run check-requirements.sh script
|
||||
run: bash scripts/check-requirements.sh nocleanup
|
||||
run: bash scripts/check-requirements.sh
|
||||
|
91
.github/workflows/server.yml
vendored
Normal file
91
.github/workflows/server.yml
vendored
Normal file
@ -0,0 +1,91 @@
|
||||
# Server build and tests
|
||||
name: Server
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
slow_tests:
|
||||
description: 'Run slow tests'
|
||||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
schedule:
|
||||
- cron: '0 0 * * *'
|
||||
|
||||
jobs:
|
||||
server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
include:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
exclude:
|
||||
- build_type: Release
|
||||
sanitizer: ADDRESS
|
||||
- build_type: Release
|
||||
sanitizer: THREAD
|
||||
- build_type: Release
|
||||
sanitizer: UNDEFINED
|
||||
|
||||
container:
|
||||
image: ubuntu:latest
|
||||
ports:
|
||||
- 8888
|
||||
options: --cpus 4
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get -y install \
|
||||
build-essential \
|
||||
git \
|
||||
cmake \
|
||||
python3-pip \
|
||||
wget \
|
||||
psmisc
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ github.event.schedule != '' && matrix.build_type == 'Release' || github.event.inputs.slow_tests == 'true' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
|
@ -110,6 +110,7 @@ option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests"
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||
option(LLAMA_METAL_EMBED_LIBRARY "llama: embed Metal library" OFF)
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
@ -145,14 +146,6 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
find_package(Threads REQUIRED)
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
add_compile_options(-Werror)
|
||||
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
add_compile_options(/WX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# enable libstdc++ assertions for debug builds
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
|
||||
@ -209,6 +202,29 @@ if (LLAMA_METAL)
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
|
||||
|
||||
if (LLAMA_METAL_EMBED_LIBRARY)
|
||||
enable_language(ASM)
|
||||
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
|
||||
|
||||
set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal")
|
||||
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
|
||||
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
DEPENDS ${METALLIB_SOURCE}
|
||||
COMMENT "Generate assembly for embedded Metal library"
|
||||
)
|
||||
|
||||
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
|
||||
endif()
|
||||
|
||||
if (LLAMA_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
|
||||
@ -747,15 +763,24 @@ function(get_flags CCID CCVER)
|
||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
list(APPEND C_FLAGS -Werror)
|
||||
list(APPEND CXX_FLAGS -Werror)
|
||||
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
add_compile_options(/WX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
set(CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
set(C_FLAGS ${WARNING_FLAGS} ${C_FLAGS})
|
||||
set(CXX_FLAGS ${WARNING_FLAGS} ${CXX_FLAGS})
|
||||
list(APPEND C_FLAGS ${WARNING_FLAGS})
|
||||
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
|
||||
|
||||
get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
|
||||
@ -773,6 +798,10 @@ set(CUDA_CXX_FLAGS "")
|
||||
if (LLAMA_CUBLAS)
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
list(APPEND CUDA_FLAGS -Werror all-warnings)
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS AND NOT MSVC)
|
||||
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
|
||||
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
|
||||
@ -907,10 +936,16 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
|
||||
# Android armeabi-v7a
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
else()
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Android arm64-v8a
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
|
56
Makefile
56
Makefile
@ -97,9 +97,10 @@ endif
|
||||
#
|
||||
|
||||
# keep standard at C11 and C++11
|
||||
MK_CPPFLAGS = -I. -Icommon
|
||||
MK_CFLAGS = -std=c11 -fPIC
|
||||
MK_CXXFLAGS = -std=c++11 -fPIC
|
||||
MK_CPPFLAGS = -I. -Icommon
|
||||
MK_CFLAGS = -std=c11 -fPIC
|
||||
MK_CXXFLAGS = -std=c++11 -fPIC
|
||||
MK_NVCCFLAGS = -std=c++11
|
||||
|
||||
# -Ofast tends to produce faster code, but may not be available for some compilers.
|
||||
ifdef LLAMA_FAST
|
||||
@ -172,7 +173,7 @@ ifdef LLAMA_DEBUG
|
||||
MK_LDFLAGS += -g
|
||||
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
MK_CXXFLAGS += -Wp,-D_GLIBCXX_ASSERTIONS
|
||||
MK_CPPFLAGS += -D_GLIBCXX_ASSERTIONS
|
||||
endif
|
||||
else
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
@ -216,7 +217,7 @@ MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmis
|
||||
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
|
||||
|
||||
ifeq ($(LLAMA_FATAL_WARNINGS),1)
|
||||
MK_CFLAGS += -Werror
|
||||
MK_CFLAGS += -Werror
|
||||
MK_CXXFLAGS += -Werror
|
||||
endif
|
||||
|
||||
@ -380,10 +381,18 @@ ifdef LLAMA_BLIS
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
ifdef LLAMA_FATAL_WARNINGS
|
||||
MK_NVCCFLAGS += -Werror all-warnings
|
||||
endif # LLAMA_FATAL_WARNINGS
|
||||
ifndef JETSON_EOL_MODULE_DETECT
|
||||
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
@ -442,9 +451,9 @@ ifdef LLAMA_CUDA_CCBIN
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
ifdef JETSON_EOL_MODULE_DETECT
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
else
|
||||
$(NVCC) $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
@ -529,11 +538,29 @@ ifdef LLAMA_METAL
|
||||
ifdef LLAMA_METAL_NDEBUG
|
||||
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
|
||||
endif
|
||||
ifdef LLAMA_METAL_EMBED_LIBRARY
|
||||
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
|
||||
OBJS += ggml-metal-embed.o
|
||||
endif
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ifdef LLAMA_METAL_EMBED_LIBRARY
|
||||
ggml-metal-embed.o: ggml-metal.metal
|
||||
@echo "Embedding Metal library"
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
|
||||
@$(AS) $(TEMP_ASSEMBLY) -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}
|
||||
endif
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
@ -545,9 +572,10 @@ GF_CC := $(CC)
|
||||
include scripts/get-flags.mk
|
||||
|
||||
# combine build flags with cmdline overrides
|
||||
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS)
|
||||
BASE_CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS)
|
||||
override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS)
|
||||
override CFLAGS := $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS)
|
||||
BASE_CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS) $(CPPFLAGS)
|
||||
override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
|
||||
@ -574,7 +602,7 @@ $(info I CC: $(shell $(CC) --version | head -n 1))
|
||||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
ifdef LLAMA_CUBLAS
|
||||
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
|
||||
CUDA_VERSION := $(shell nvcc --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
|
||||
ifndef CUDA_DOCKER_ARCH
|
||||
ifndef CUDA_POWER_ARCH
|
||||
@ -696,7 +724,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h examples/llava/llava.h examples/llava/llava.cpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h %.hpp $< examples/llava/clip.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
@ -1,6 +1,7 @@
|
||||
# llama.cpp for SYCL
|
||||
|
||||
- [Background](#background)
|
||||
- [News](#news)
|
||||
- [OS](#os)
|
||||
- [Intel GPU](#intel-gpu)
|
||||
- [Docker](#docker)
|
||||
@ -25,6 +26,21 @@ The llama.cpp for SYCL is used to support Intel GPUs.
|
||||
|
||||
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|
||||
## News
|
||||
|
||||
- 2024.3
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
- Support OPs
|
||||
- hardsigmoid
|
||||
- hardswish
|
||||
- pool2d
|
||||
|
||||
- 2024.1
|
||||
- Create SYCL backend for Intel GPU.
|
||||
- Support Windows build
|
||||
|
||||
## OS
|
||||
|
||||
|OS|Status|Verified|
|
||||
@ -272,7 +288,7 @@ Please install [Visual Studio](https://visualstudio.microsoft.com/) which impact
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
|
||||
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||
Recommend to install to default folder: **C:\Program Files (x86)\Intel\oneAPI**.
|
||||
|
||||
Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
|
||||
@ -449,6 +465,7 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
|-|-|-|
|
||||
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
|
||||
|
||||
## Known Issue
|
||||
|
||||
@ -458,6 +475,10 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
|
||||
Solution: add **--no-mmap** or **--mmap 0**.
|
||||
|
||||
- Split-mode: [row] is not supported
|
||||
|
||||
It's on developing.
|
||||
|
||||
## Q&A
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
29
README.md
29
README.md
@ -8,15 +8,16 @@
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
### Recent API changes
|
||||
|
||||
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
|
||||
|
||||
### Hot topics
|
||||
|
||||
- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
|
||||
- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
- A-series: https://github.com/ggerganov/llama.cpp/discussions/4508
|
||||
- The `api_like_OAI.py` script has been removed - use `server` instead ([#5766](https://github.com/ggerganov/llama.cpp/issues/5766#issuecomment-1969037761))
|
||||
- Support for chat templates: [Wiki (contributions welcome)](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- Support for Gemma models: https://github.com/ggerganov/llama.cpp/pull/5631
|
||||
- Non-linear quantization IQ4_NL: https://github.com/ggerganov/llama.cpp/pull/5590
|
||||
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
|
||||
|
||||
----
|
||||
@ -107,16 +108,20 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
|
||||
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
|
||||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
|
||||
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
|
||||
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
|
||||
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
|
||||
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
|
||||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||||
|
||||
**HTTP server**
|
||||
|
||||
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
|
||||
|
||||
**Bindings:**
|
||||
|
||||
@ -145,6 +150,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [Faraday](https://faraday.dev/) (proprietary)
|
||||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||||
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
|
||||
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
|
||||
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
|
||||
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
|
||||
@ -156,6 +162,9 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
|
||||
- [Msty](https://msty.app) (proprietary)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
|
||||
---
|
||||
|
||||
@ -781,7 +790,7 @@ And after 4.45 hours, you will have the final perplexity.
|
||||
### Interactive mode
|
||||
|
||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||
|
||||
Here is an example of a few-shot interaction, invoked with the command
|
||||
|
||||
@ -845,7 +854,7 @@ Sample run:
|
||||
```
|
||||
== Running in interactive mode. ==
|
||||
- Press Ctrl+C to interject at any time.
|
||||
- Press Return to return control to LLaMa.
|
||||
- Press Return to return control to LLaMA.
|
||||
- If you want to submit another line, end your input in '\'.
|
||||
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
116
awq-py/README.md
116
awq-py/README.md
@ -1,116 +0,0 @@
|
||||
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
|
||||
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
|
||||
|
||||
**Supported models:**
|
||||
|
||||
- [X] LLaMA
|
||||
- [x] LLaMA 2
|
||||
- [X] MPT
|
||||
- [X] Mistral AI v0.1
|
||||
- [ ] Bloom
|
||||
- [ ] Mixtral MoE
|
||||
|
||||
**TODO:**
|
||||
- [x] Update version work with both MPT and MPT-AWQ model
|
||||
- [ ] Add OPT model
|
||||
- [ ] Add Bloom model
|
||||
- [ ] Add Mixtral MoE
|
||||
- [ ] Support w3, w2
|
||||
|
||||
|
||||
## Contents
|
||||
|
||||
- [Install](##Install)
|
||||
- [Convert](##Convert)
|
||||
- [Quantize](##Quantize)
|
||||
- [Test](##Test)
|
||||
- [Benchmark](##Benchmark)
|
||||
- [Results](##Results)
|
||||
|
||||
## Install
|
||||
Install requirements
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
|
||||
```bash
|
||||
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
|
||||
```
|
||||
|
||||
## Convert
|
||||
Example for llama model
|
||||
```bash
|
||||
# For llama7b and llama2 models
|
||||
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
|
||||
# For mistral and mpt models
|
||||
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
|
||||
```
|
||||
|
||||
## Quantize
|
||||
```bash
|
||||
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
|
||||
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
|
||||
```
|
||||
|
||||
## Test
|
||||
```bash
|
||||
# For all models.
|
||||
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
|
||||
```
|
||||
|
||||
## Benchmark
|
||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||
```bash
|
||||
# For llama and llama2, and mistral models.
|
||||
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
|
||||
```
|
||||
|
||||
## Results
|
||||
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
|
||||
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
|
||||
|
||||
### Llama 7B (Build with OpenBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|-----------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|
||||
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|
||||
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
|
||||
### Llama2 7B (Build with CuBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|------------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|
||||
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|
||||
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
|
||||
### Mistral 7B v0.1 (Build with CuBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|-------------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|
||||
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|
||||
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
### MPT 7B (Build with OpenBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|---------:|--------------|-------:|-------:|-------:|--------:|
|
||||
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|
||||
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|
||||
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
@ -1,254 +0,0 @@
|
||||
"""
|
||||
Implements the AWQ for llama.cpp use cases.
|
||||
Original paper: https://arxiv.org/abs/2306.00978
|
||||
|
||||
This code is based on versions of the AWQ implementation found in the following repositories:
|
||||
* https://github.com/mit-han-lab/llm-awq
|
||||
* https://github.com/casper-hansen/AutoAWQ
|
||||
"""
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoConfig
|
||||
from transformers.models.bloom.modeling_bloom import BloomGelu
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
from transformers.activations import GELUActivation
|
||||
|
||||
|
||||
class ScaledActivation(nn.Module):
|
||||
"""
|
||||
ScaledActivation module wraps an existing activation function and applies a
|
||||
scale factor to its output.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The activation function to be scaled.
|
||||
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
|
||||
scale factors for each feature.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The scaled output of the activation function.
|
||||
"""
|
||||
|
||||
def __init__(self, module, scales):
|
||||
super().__init__()
|
||||
self.act = module
|
||||
self.scales = nn.Parameter(scales.data)
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
|
||||
|
||||
|
||||
def set_op_by_name(layer, name, new_module):
|
||||
"""
|
||||
Set the new module for given module's name.
|
||||
|
||||
Args:
|
||||
layer (nn.Module): The layer in which to replace the submodule.
|
||||
name (str): The path to the submodule to be replaced, using dot notation
|
||||
to access nested modules.
|
||||
new_module (nn.Module): The new module to replace the existing one.
|
||||
"""
|
||||
levels = name.split(".")
|
||||
if len(levels) > 1:
|
||||
mod_ = layer
|
||||
for l_idx in range(len(levels) - 1):
|
||||
if levels[l_idx].isdigit():
|
||||
mod_ = mod_[int(levels[l_idx])]
|
||||
else:
|
||||
mod_ = getattr(mod_, levels[l_idx])
|
||||
setattr(mod_, levels[-1], new_module)
|
||||
else:
|
||||
setattr(layer, name, new_module)
|
||||
|
||||
|
||||
def get_op_by_name(module, op_name):
|
||||
"""
|
||||
Retrieves a submodule within a given layer based on its name.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The layer containing the submodule to find.
|
||||
op_name (str): The name of the submodule.
|
||||
|
||||
Returns:
|
||||
nn.Module: The requested submodule found within the given layer.
|
||||
|
||||
Raises:
|
||||
ValueError: If the specified submodule cannot be found within the layer.
|
||||
"""
|
||||
for name, m in module.named_modules():
|
||||
if name == op_name:
|
||||
return m
|
||||
raise ValueError(f"Cannot find op {op_name} in module {module}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_ln_fcs(ln, fcs, scales):
|
||||
"""
|
||||
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
|
||||
|
||||
Args:
|
||||
ln (nn.LayerNorm): The LayerNorm module to be scaled.
|
||||
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
"""
|
||||
|
||||
if not isinstance(fcs, list):
|
||||
fcs = [fcs]
|
||||
|
||||
scales = scales.to(ln.weight.device)
|
||||
|
||||
ln.weight.div_(scales)
|
||||
if hasattr(ln, "bias") and ln.bias is not None:
|
||||
ln.bias.div_(scales)
|
||||
|
||||
for fc in fcs:
|
||||
fc.weight.mul_(scales.view(1, -1))
|
||||
|
||||
for p in ln.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
for fc in fcs:
|
||||
for p in fc.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_fc_fc(fc1, fc2, scales):
|
||||
"""
|
||||
Scales the weights of two fully-connected layers in a specific pattern.
|
||||
|
||||
Args:
|
||||
fc1 (nn.Linear): The first fully-connected layer to be scaled.
|
||||
fc2 (nn.Linear): The second fully-connected layer to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
"""
|
||||
assert isinstance(fc1, nn.Linear)
|
||||
assert isinstance(fc2, nn.Linear)
|
||||
|
||||
scales = scales.to(fc1.weight.device)
|
||||
|
||||
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
|
||||
if fc1.bias is not None:
|
||||
fc1.bias.div_(scales.view(-1))
|
||||
|
||||
fc2.weight.mul_(scales.view(1, -1))
|
||||
|
||||
for p in fc1.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
for p in fc2.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_gelu_fc(gelu, fc, scales):
|
||||
"""
|
||||
Scales the weight of a GELU activation and a fully-connected layer proportionally.
|
||||
|
||||
Args:
|
||||
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
|
||||
fc (nn.Linear): The fully-connected layer to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
|
||||
Raises:
|
||||
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
|
||||
TypeError: If the `fc` module is not of type `nn.Linear`.
|
||||
"""
|
||||
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
|
||||
assert isinstance(fc, nn.Linear)
|
||||
|
||||
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
|
||||
|
||||
for p in fc.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
def apply_scale(module, scales_list, input_feat_dict=None):
|
||||
"""
|
||||
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module containing the layers to be scaled.
|
||||
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
|
||||
* prev_op_name (str): The name of the preceding operation or module,
|
||||
relative to which the layers to be scaled are located.
|
||||
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
|
||||
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
|
||||
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
|
||||
input features (optional).
|
||||
"""
|
||||
for prev_op_name, layer_names, scales in scales_list:
|
||||
prev_op = get_op_by_name(module, prev_op_name)
|
||||
layers = [get_op_by_name(module, name) for name in layer_names]
|
||||
|
||||
prev_op.cuda()
|
||||
for layer in layers:
|
||||
layer.cuda()
|
||||
scales.cuda()
|
||||
|
||||
if isinstance(prev_op, nn.Linear):
|
||||
assert len(layers) == 1
|
||||
scale_fc_fc(prev_op, layers[0], scales)
|
||||
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
|
||||
scale_ln_fcs(prev_op, layers, scales)
|
||||
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
|
||||
new_module = ScaledActivation(prev_op, scales)
|
||||
set_op_by_name(module, prev_op_name, new_module)
|
||||
scale_gelu_fc(prev_op, layers[0], scales)
|
||||
else:
|
||||
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
|
||||
|
||||
# apply the scaling to input feat if given; prepare it for clipping
|
||||
if input_feat_dict is not None:
|
||||
for layer_name in layer_names:
|
||||
inp = input_feat_dict[layer_name]
|
||||
inp.div_(scales.view(1, -1).to(inp.device))
|
||||
|
||||
prev_op.cpu()
|
||||
for layer in layers:
|
||||
layer.cpu()
|
||||
scales.cpu()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def apply_clip(module, clip_list):
|
||||
"""
|
||||
Applies element-wise clipping to the weight of a specific layer within a given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module containing the layer to be clipped.
|
||||
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
|
||||
* name (str): The name of the layer to be clipped, relative to the root of the module.
|
||||
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
|
||||
"""
|
||||
for name, max_val in clip_list:
|
||||
layer = get_op_by_name(module, name)
|
||||
layer.cuda()
|
||||
max_val = max_val.to(layer.weight.device)
|
||||
org_shape = layer.weight.shape
|
||||
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
|
||||
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
|
||||
layer.weight.data = layer.weight.data.reshape(org_shape)
|
||||
layer.cpu()
|
||||
|
||||
|
||||
def add_scale_weights(model_path, scale_path, tmp_path):
|
||||
"""
|
||||
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
|
||||
including scaling factors and clipping bounds.
|
||||
|
||||
Args:
|
||||
model_path (str): Path to the pre-trained model to be equipped with AWQ.
|
||||
scale_path (str): Path to the AWQ scale factors (.pt file).
|
||||
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
|
||||
"""
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, config=config, trust_remote_code=True
|
||||
)
|
||||
model.eval()
|
||||
awq_results = torch.load(str(scale_path), map_location="cpu")
|
||||
apply_scale(model, awq_results["scale"])
|
||||
apply_clip(model, awq_results["clip"])
|
||||
model.save_pretrained(str(tmp_path))
|
||||
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")
|
@ -1,2 +0,0 @@
|
||||
torch>=2.1.1
|
||||
transformers>=4.32.0
|
@ -123,6 +123,7 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
const clip = make.obj("clip", "examples/llava/clip.cpp");
|
||||
const llava = make.obj("llava", "examples/llava/llava.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
|
||||
@ -131,7 +132,7 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip });
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip, llava });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
34
ci/run.sh
34
ci/run.sh
@ -272,19 +272,19 @@ function gg_run_open_llama_3b_v2 {
|
||||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
@ -343,17 +343,17 @@ function gg_run_open_llama_3b_v2 {
|
||||
python3 ../convert-lora-to-ggml.py ${path_lora}
|
||||
|
||||
# f16
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0 + f16 lora-base
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
set +e
|
||||
|
@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
||||
else { invalid_param = true; break; }
|
||||
} else if (arg == "--rope-scale") {
|
||||
if (++i >= argc) {
|
||||
@ -335,6 +335,22 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
} else if (arg == "--pooling") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
|
||||
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
|
||||
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
|
||||
else { invalid_param = true; break; }
|
||||
} else if (arg == "--defrag-thold" || arg == "-dt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.defrag_thold = std::stof(argv[i]);
|
||||
} else if (arg == "--samplers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -630,11 +646,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
std::string arg_next = argv[i];
|
||||
if (arg_next == "none") {
|
||||
params.split_mode = LLAMA_SPLIT_NONE;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
params.split_mode = LLAMA_SPLIT_ROW;
|
||||
#ifdef GGML_USE_SYCL
|
||||
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
||||
exit(1);
|
||||
#endif // GGML_USE_SYCL
|
||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
@ -837,15 +857,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
@ -1004,10 +1024,14 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
|
||||
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
||||
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
||||
printf(" --pooling {none,mean,cls}\n");
|
||||
printf(" pooling type for embeddings, use model default if unspecified\n");
|
||||
printf(" -dt N, --defrag-thold N\n");
|
||||
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
||||
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
|
||||
@ -1273,7 +1297,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.n_batch = params.n_batch;
|
||||
cparams.n_threads = params.n_threads;
|
||||
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
cparams.mul_mat_q = params.mul_mat_q;
|
||||
cparams.seed = params.seed;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embedding = params.embedding;
|
||||
@ -1285,6 +1308,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.pooling_type = params.pooling_type;
|
||||
cparams.defrag_thold = params.defrag_thold;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
|
||||
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
|
||||
@ -1716,7 +1741,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
|
@ -61,7 +61,7 @@ struct gpt_params {
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
@ -75,8 +75,12 @@ struct gpt_params {
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
@ -114,7 +118,6 @@ struct gpt_params {
|
||||
|
||||
bool kl_divergence = false; // compute KL-divergence
|
||||
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
|
@ -266,7 +266,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
// }
|
||||
//}
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,7 @@ struct train_state * init_train_state() {
|
||||
|
||||
state->opt = new struct ggml_opt_context;
|
||||
state->opt->ctx = NULL;
|
||||
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
state->opt->loss_after = 0.0f;
|
||||
|
||||
@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
||||
std::string opt_type;
|
||||
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
|
||||
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
|
||||
opt->params.type = GGML_OPT_ADAM;
|
||||
opt->params.type = GGML_OPT_TYPE_ADAM;
|
||||
|
||||
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
|
||||
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
|
||||
@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
||||
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
|
||||
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
|
||||
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
|
||||
opt->params.type = GGML_OPT_LBFGS;
|
||||
opt->params.type = GGML_OPT_TYPE_LBFGS;
|
||||
|
||||
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
|
||||
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
|
||||
@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
|
||||
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
|
||||
|
||||
switch (opt->params.type) {
|
||||
case GGML_OPT_ADAM:
|
||||
case GGML_OPT_TYPE_ADAM:
|
||||
{
|
||||
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
|
||||
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
|
||||
@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
|
||||
gguf_add_tensor(fctx, opt->adam.pf);
|
||||
}
|
||||
} break;
|
||||
case GGML_OPT_LBFGS:
|
||||
case GGML_OPT_TYPE_LBFGS:
|
||||
{
|
||||
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
|
||||
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
|
||||
|
@ -8,9 +8,10 @@ import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, Sequence, cast
|
||||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -35,8 +36,11 @@ class SentencePieceTokenTypes(IntEnum):
|
||||
UNUSED = 5
|
||||
BYTE = 6
|
||||
|
||||
AnyModel = TypeVar("AnyModel", bound="type[Model]")
|
||||
|
||||
class Model(ABC):
|
||||
_model_classes: dict[str, type[Model]] = {}
|
||||
|
||||
class Model:
|
||||
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
|
||||
self.dir_model = dir_model
|
||||
self.ftype = ftype
|
||||
@ -47,10 +51,14 @@ class Model:
|
||||
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
|
||||
self.part_names = self._get_part_names()
|
||||
self.hparams = Model.load_hparams(self.dir_model)
|
||||
self.model_arch = self._get_model_architecture()
|
||||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def model_arch(self) -> gguf.MODEL_ARCH:
|
||||
pass
|
||||
|
||||
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
|
||||
key = next((k for k in keys if k in self.hparams), None)
|
||||
if key is not None:
|
||||
@ -96,9 +104,11 @@ class Model:
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon"], optional=True)) is not None:
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
@ -174,51 +184,21 @@ class Model:
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
@staticmethod
|
||||
def from_model_architecture(model_architecture):
|
||||
if model_architecture == "GPTNeoXForCausalLM":
|
||||
return GPTNeoXModel
|
||||
if model_architecture == "BloomForCausalLM":
|
||||
return BloomModel
|
||||
if model_architecture == "MPTForCausalLM":
|
||||
return MPTModel
|
||||
if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return BaichuanModel
|
||||
if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
|
||||
return FalconModel
|
||||
if model_architecture == "GPTBigCodeForCausalLM":
|
||||
return StarCoderModel
|
||||
if model_architecture == "GPTRefactForCausalLM":
|
||||
return RefactModel
|
||||
if model_architecture == "PersimmonForCausalLM":
|
||||
return PersimmonModel
|
||||
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
if model_architecture == "Qwen2ForCausalLM":
|
||||
return Model
|
||||
if model_architecture == "MixtralForCausalLM":
|
||||
return MixtralModel
|
||||
if model_architecture == "GPT2LMHeadModel":
|
||||
return GPT2Model
|
||||
if model_architecture == "PhiForCausalLM":
|
||||
return Phi2Model
|
||||
if model_architecture == "PlamoForCausalLM":
|
||||
return PlamoModel
|
||||
if model_architecture == "CodeShellForCausalLM":
|
||||
return CodeShellModel
|
||||
if model_architecture == "OrionForCausalLM":
|
||||
return OrionModel
|
||||
if model_architecture == "InternLM2ForCausalLM":
|
||||
return InternLM2Model
|
||||
if model_architecture == "MiniCPMForCausalLM":
|
||||
return MiniCPMModel
|
||||
if model_architecture == "BertModel":
|
||||
return BertModel
|
||||
if model_architecture == "NomicBertModel":
|
||||
return NomicBertModel
|
||||
return Model
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
assert names
|
||||
def func(modelcls: type[Model]):
|
||||
for name in names:
|
||||
cls._model_classes[name] = modelcls
|
||||
return modelcls
|
||||
return func
|
||||
|
||||
@classmethod
|
||||
def from_model_architecture(cls, arch):
|
||||
try:
|
||||
return cls._model_classes[arch]
|
||||
except KeyError:
|
||||
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
return Model.count_model_parts(self.dir_model, ".safetensors") > 0
|
||||
@ -233,53 +213,6 @@ class Model:
|
||||
return ("pytorch_model.bin",)
|
||||
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
|
||||
|
||||
def _get_model_architecture(self) -> gguf.MODEL_ARCH:
|
||||
arch = self.hparams["architectures"][0]
|
||||
if arch == "GPTNeoXForCausalLM":
|
||||
return gguf.MODEL_ARCH.GPTNEOX
|
||||
if arch == "BloomForCausalLM":
|
||||
return gguf.MODEL_ARCH.BLOOM
|
||||
if arch == "MPTForCausalLM":
|
||||
return gguf.MODEL_ARCH.MPT
|
||||
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return gguf.MODEL_ARCH.BAICHUAN
|
||||
if arch in ("FalconForCausalLM", "RWForCausalLM"):
|
||||
return gguf.MODEL_ARCH.FALCON
|
||||
if arch == "GPTBigCodeForCausalLM":
|
||||
return gguf.MODEL_ARCH.STARCODER
|
||||
if arch == "GPTRefactForCausalLM":
|
||||
return gguf.MODEL_ARCH.REFACT
|
||||
if arch == "PersimmonForCausalLM":
|
||||
return gguf.MODEL_ARCH.PERSIMMON
|
||||
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
if arch == "Qwen2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.QWEN2
|
||||
if arch == "MixtralForCausalLM":
|
||||
return gguf.MODEL_ARCH.LLAMA
|
||||
if arch == "GPT2LMHeadModel":
|
||||
return gguf.MODEL_ARCH.GPT2
|
||||
if arch == "PhiForCausalLM":
|
||||
return gguf.MODEL_ARCH.PHI2
|
||||
if arch == "PlamoForCausalLM":
|
||||
return gguf.MODEL_ARCH.PLAMO
|
||||
if arch == "CodeShellForCausalLM":
|
||||
return gguf.MODEL_ARCH.CODESHELL
|
||||
if arch == "OrionForCausalLM":
|
||||
return gguf.MODEL_ARCH.ORION
|
||||
if arch == "InternLM2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.INTERNLM2
|
||||
if arch == "MiniCPMForCausalLM":
|
||||
return gguf.MODEL_ARCH.MINICPM
|
||||
if arch == "BertModel":
|
||||
return gguf.MODEL_ARCH.BERT
|
||||
if arch == "NomicBertModel":
|
||||
return gguf.MODEL_ARCH.NOMIC_BERT
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
def _set_vocab_gpt2(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
@ -447,7 +380,10 @@ class Model:
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
@Model.register("GPTNeoXForCausalLM")
|
||||
class GPTNeoXModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPTNEOX
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
|
||||
@ -464,7 +400,10 @@ class GPTNeoXModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||
|
||||
|
||||
@Model.register("BloomForCausalLM")
|
||||
class BloomModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BLOOM
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name("Bloom")
|
||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||
@ -556,7 +495,10 @@ class BloomModel(Model):
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("MPTForCausalLM")
|
||||
class MPTModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MPT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layers"]
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
@ -618,13 +560,11 @@ class MPTModel(Model):
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
# note: MPT output is tied to (same as) wte in original model;
|
||||
# for easier implementation in llama.cpp it's duplicated in GGUF, though :/
|
||||
if new_name == "token_embd.weight":
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
|
||||
@Model.register("OrionForCausalLM")
|
||||
class OrionModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.ORION
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
@ -655,6 +595,8 @@ class OrionModel(Model):
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
# note: config provides rms norm but it is actually layer norm
|
||||
# ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
|
||||
|
||||
def write_tensors(self):
|
||||
@ -701,7 +643,10 @@ class OrionModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
|
||||
class BaichuanModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BAICHUAN
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
@ -816,7 +761,10 @@ class BaichuanModel(Model):
|
||||
return weights[r * n_part:r * n_part + r, ...]
|
||||
|
||||
|
||||
@Model.register("FalconForCausalLM", "RWForCausalLM")
|
||||
class FalconModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams.get("num_hidden_layers")
|
||||
if block_count is None:
|
||||
@ -909,7 +857,10 @@ class FalconModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("GPTBigCodeForCausalLM")
|
||||
class StarCoderModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
@ -924,7 +875,10 @@ class StarCoderModel(Model):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@Model.register("GPTRefactForCausalLM")
|
||||
class RefactModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.REFACT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hidden_dim = self.hparams["n_embd"]
|
||||
inner_dim = 4 * hidden_dim
|
||||
@ -1008,7 +962,10 @@ class RefactModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("PersimmonForCausalLM")
|
||||
class PersimmonModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PERSIMMON
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
@ -1031,7 +988,6 @@ class PersimmonModel(Model):
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
@ -1057,7 +1013,10 @@ class PersimmonModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
||||
class StableLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STABLELM
|
||||
|
||||
def set_vocab(self):
|
||||
if (self.dir_model / "tokenizer.json").is_file():
|
||||
self._set_vocab_gpt2()
|
||||
@ -1074,18 +1033,25 @@ class StableLMModel(Model):
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||
|
||||
|
||||
@Model.register("MixtralForCausalLM")
|
||||
class MixtralModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
@Model.register("MiniCPMForCausalLM")
|
||||
class MiniCPMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MINICPM
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
self.gguf_writer.add_name("MiniCPM")
|
||||
@ -1162,7 +1128,10 @@ class MiniCPMModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("QWenLMHeadModel")
|
||||
class QwenModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN
|
||||
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b):
|
||||
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
||||
@ -1242,7 +1211,15 @@ class QwenModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("Qwen2ForCausalLM")
|
||||
class Qwen2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
|
||||
@Model.register("GPT2LMHeadModel")
|
||||
class GPT2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
@ -1304,7 +1281,10 @@ class GPT2Model(Model):
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
|
||||
@Model.register("PhiForCausalLM")
|
||||
class Phi2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PHI2
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
@ -1326,7 +1306,10 @@ class Phi2Model(Model):
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
class PlamoModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PLAMO
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
@ -1405,7 +1388,10 @@ class PlamoModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("CodeShellForCausalLM")
|
||||
class CodeShellModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.CODESHELL
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
@ -1470,7 +1456,10 @@ class CodeShellModel(Model):
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("InternLM2ForCausalLM")
|
||||
class InternLM2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.INTERNLM2
|
||||
|
||||
def set_vocab(self):
|
||||
# (TODO): Is there a better way?
|
||||
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
|
||||
@ -1642,7 +1631,10 @@ in chat mode so that the conversation can end normally.")
|
||||
self.post_write_tensors(tensor_map, name, data_torch)
|
||||
|
||||
|
||||
@Model.register("BertModel")
|
||||
class BertModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vocab_size = None
|
||||
@ -1652,16 +1644,17 @@ class BertModel(Model):
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# get pooling path
|
||||
with open(self.dir_model / "modules.json", encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
pooling_path = None
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
pooling_type = gguf.PoolingType.NONE
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
@ -1671,8 +1664,7 @@ class BertModel(Model):
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||||
|
||||
self.gguf_writer.add_pooling_type(pooling_type.value)
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
def set_vocab(self):
|
||||
path = self.dir_model
|
||||
@ -1748,7 +1740,10 @@ class BertModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("NomicBertModel")
|
||||
class NomicBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@ -1785,6 +1780,70 @@ class NomicBertModel(BertModel):
|
||||
yield name, data
|
||||
|
||||
|
||||
@Model.register("GemmaForCausalLM")
|
||||
class GemmaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GEMMA
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_key_length(hparams["head_dim"])
|
||||
self.gguf_writer.add_value_length(hparams["head_dim"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
|
||||
for name, data_torch in self.get_tensors():
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("Starcoder2ForCausalLM")
|
||||
class StarCoder2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
@ -373,7 +373,7 @@ def handle_metadata(cfg, hp):
|
||||
raise ValueError('Unable to load metadata')
|
||||
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
||||
vocab_factory = convert.VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
|
||||
convert.check_vocab_size(params, vocab)
|
||||
return params, vocab, special_vocab
|
||||
|
||||
@ -398,8 +398,8 @@ def handle_args():
|
||||
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||
parser.add_argument("--vocab-dir", type=Path,
|
||||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
|
||||
parser.add_argument("--vocabtype", default="spm,hfft",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
|
72
convert.py
72
convert.py
@ -1282,35 +1282,32 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||
|
||||
|
||||
class VocabFactory:
|
||||
_FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
|
||||
|
||||
def __init__(self, path: Path):
|
||||
self.path = path
|
||||
self.files: dict[str, Path | None] = {
|
||||
"tokenizer.model": None,
|
||||
"vocab.json": None,
|
||||
"tokenizer.json": None,
|
||||
}
|
||||
self._detect_files()
|
||||
self.file_paths = self._detect_files()
|
||||
print(f"Found vocab files: {self.file_paths}")
|
||||
|
||||
def _detect_files(self):
|
||||
for file in self.files.keys():
|
||||
file_path = self.path / file
|
||||
parent_file_path = self.path.parent / file
|
||||
if file_path.exists():
|
||||
self.files[file] = file_path
|
||||
elif parent_file_path.exists():
|
||||
self.files[file] = parent_file_path
|
||||
print(f"Found vocab files: {self.files}")
|
||||
def _detect_files(self) -> dict[str, Path | None]:
|
||||
def locate(file: str) -> Path | None:
|
||||
if (path := self.path / file).exists():
|
||||
return path
|
||||
if (path := self.path.parent / file).exists():
|
||||
return path
|
||||
return None
|
||||
|
||||
def _select_file(self, vocabtype: str | None) -> Path:
|
||||
if vocabtype in ["spm", "bpe"]:
|
||||
for file_key in self.files.keys():
|
||||
if (file := self.files[file_key]) is not None:
|
||||
return file
|
||||
raise FileNotFoundError(f"{vocabtype} vocab not found.")
|
||||
if vocabtype == "hfft":
|
||||
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
|
||||
return self.path
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
return {vt: locate(f) for vt, f in self._FILES.items()}
|
||||
|
||||
def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
|
||||
for vtype in vocab_types:
|
||||
try:
|
||||
path = self.file_paths[vtype]
|
||||
except KeyError:
|
||||
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
|
||||
if path is not None:
|
||||
return vtype, path
|
||||
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
|
||||
|
||||
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
load_merges = vocabtype == "bpe"
|
||||
@ -1322,30 +1319,30 @@ class VocabFactory:
|
||||
n_vocab=n_vocab,
|
||||
)
|
||||
|
||||
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
path = self._select_file(vocabtype)
|
||||
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
||||
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
vocab_type, path = self._select_file(vocab_types)
|
||||
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
|
||||
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
vocab: Vocab
|
||||
if vocabtype == "bpe":
|
||||
if vocab_type == "bpe":
|
||||
vocab = BpeVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocabtype == "spm":
|
||||
elif vocab_type == "spm":
|
||||
vocab = SentencePieceVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocabtype == "hfft":
|
||||
elif vocab_type == "hfft":
|
||||
vocab = HfVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
path.parent, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
raise ValueError(vocab_type)
|
||||
# FIXME: Respect --vocab-dir?
|
||||
special_vocab = self._create_special_vocab(
|
||||
vocab,
|
||||
vocabtype,
|
||||
vocab_type,
|
||||
model_parent_path,
|
||||
)
|
||||
return vocab, special_vocab
|
||||
@ -1379,15 +1376,14 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||
# We currently only support Q8_0 output on little endian systems.
|
||||
output_choices.append("q8_0")
|
||||
vocab_types = ["spm", "bpe", "hfft"]
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
|
||||
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
|
||||
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
@ -1448,7 +1444,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
model_parent_path = model_plus.paths[0].parent
|
||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||
vocab_factory = VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
|
||||
|
||||
if args.vocab_only:
|
||||
if not args.outfile:
|
||||
|
@ -1547,7 +1547,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
|
||||
opt_params_lbfgs.print_forward_graph = false;
|
||||
opt_params_lbfgs.print_backward_graph = false;
|
||||
opt_params_lbfgs.lbfgs.n_iter = 16;
|
||||
|
@ -32,16 +32,15 @@ int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
int n_kv_max = 2048;
|
||||
int is_pp_shared = 0;
|
||||
int n_gpu_layers = 0;
|
||||
int mmq = 0;
|
||||
|
||||
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
|
||||
std::vector<int> n_tg = { 128, 256, };
|
||||
@ -65,19 +64,15 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
mmq = std::atoi(argv[5]);
|
||||
n_pp = parse_list(argv[5]);
|
||||
}
|
||||
|
||||
if (argc >= 7) {
|
||||
n_pp = parse_list(argv[6]);
|
||||
n_tg = parse_list(argv[6]);
|
||||
}
|
||||
|
||||
if (argc >= 8) {
|
||||
n_tg = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
if (argc >= 9) {
|
||||
n_pl = parse_list(argv[8]);
|
||||
n_pl = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
// init LLM
|
||||
@ -106,7 +101,6 @@ int main(int argc, char ** argv) {
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_max;
|
||||
ctx_params.n_batch = 2048;
|
||||
ctx_params.mul_mat_q = mmq;
|
||||
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
@ -159,7 +153,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
|
@ -1531,7 +1531,7 @@ int main(int argc, char ** argv) {
|
||||
lora.hparams.n_rank_output = n_rank_output;
|
||||
|
||||
// set opt params from command line
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
opt->params.print_forward_graph = false;
|
||||
opt->params.print_backward_graph = false;
|
||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
|
@ -378,10 +378,10 @@ int main(int argc, char ** argv) {
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
control_message = " - Press Return to return control to LLaMa.\n"
|
||||
control_message = " - Press Return to return control to LLaMA.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
@ -447,8 +447,8 @@ int main(int argc, char ** argv) {
|
||||
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
|
@ -87,7 +87,21 @@ class SchemaConverter:
|
||||
elif schema_type == 'array' and 'items' in schema:
|
||||
# TODO `prefixItems` keyword
|
||||
item_rule_name = self.visit(schema['items'], f'{name}{"-" if name else ""}item')
|
||||
rule = f'"[" space ({item_rule_name} ("," space {item_rule_name})*)? "]" space'
|
||||
list_item_operator = f'("," space {item_rule_name})'
|
||||
successive_items = ""
|
||||
min_items = schema.get("minItems", 0)
|
||||
if min_items > 0:
|
||||
first_item = f"({item_rule_name})"
|
||||
successive_items = list_item_operator * (min_items - 1)
|
||||
min_items -= 1
|
||||
else:
|
||||
first_item = f"({item_rule_name})?"
|
||||
max_items = schema.get("maxItems")
|
||||
if max_items is not None and max_items > min_items:
|
||||
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
|
||||
else:
|
||||
successive_items += list_item_operator + "*"
|
||||
rule = f'"[" space {first_item} {successive_items} "]" space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
else:
|
||||
|
@ -35,7 +35,6 @@ options:
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
-mmq, --mul-mat-q <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
|
@ -123,20 +123,15 @@ static std::string get_gpu_info() {
|
||||
}
|
||||
#endif
|
||||
#ifdef GGML_USE_SYCL
|
||||
int device_list[GGML_SYCL_MAX_DEVICES];
|
||||
ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
|
||||
|
||||
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
|
||||
if (device_list[i] >0 ){
|
||||
char buf[128];
|
||||
ggml_sycl_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
int count = ggml_backend_sycl_get_device_count();
|
||||
for (int i = 0; i < count; i++) {
|
||||
char buf[128];
|
||||
ggml_sycl_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
if (i < count - 1) {
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
if (id.length() >2 ) {
|
||||
id.pop_back();
|
||||
}
|
||||
#endif
|
||||
// TODO: other backends
|
||||
return id;
|
||||
@ -157,9 +152,9 @@ static const char * output_format_str(output_formats format) {
|
||||
|
||||
static const char * split_mode_str(llama_split_mode mode) {
|
||||
switch (mode) {
|
||||
case LLAMA_SPLIT_NONE: return "none";
|
||||
case LLAMA_SPLIT_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_ROW: return "row";
|
||||
case LLAMA_SPLIT_MODE_NONE: return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW: return "row";
|
||||
default: GGML_ASSERT(!"invalid split mode");
|
||||
}
|
||||
}
|
||||
@ -176,7 +171,6 @@ struct cmd_params {
|
||||
std::vector<llama_split_mode> split_mode;
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::vector<float>> tensor_split;
|
||||
std::vector<bool> use_mmap;
|
||||
int reps;
|
||||
@ -193,10 +187,9 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* split_mode */ {LLAMA_SPLIT_LAYER},
|
||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* use_mmap */ {true},
|
||||
/* reps */ 5,
|
||||
@ -221,7 +214,6 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
@ -358,11 +350,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
for (const auto & m : p) {
|
||||
llama_split_mode mode;
|
||||
if (m == "none") {
|
||||
mode = LLAMA_SPLIT_NONE;
|
||||
mode = LLAMA_SPLIT_MODE_NONE;
|
||||
} else if (m == "layer") {
|
||||
mode = LLAMA_SPLIT_LAYER;
|
||||
mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (m == "row") {
|
||||
mode = LLAMA_SPLIT_ROW;
|
||||
mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
@ -383,13 +375,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmp" || arg == "--mmap") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -466,7 +451,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
@ -486,7 +470,6 @@ struct cmd_params_instance {
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
|
||||
@ -518,7 +501,6 @@ struct cmd_params_instance {
|
||||
cparams.n_batch = n_batch;
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.mul_mat_q = mul_mat_q;
|
||||
cparams.offload_kqv = !no_kv_offload;
|
||||
|
||||
return cparams;
|
||||
@ -538,7 +520,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nkvo : params.no_kv_offload)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
@ -557,7 +538,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
};
|
||||
@ -580,7 +560,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
};
|
||||
@ -616,7 +595,6 @@ struct test {
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
int n_prompt;
|
||||
@ -639,7 +617,6 @@ struct test {
|
||||
split_mode = inst.split_mode;
|
||||
main_gpu = inst.main_gpu;
|
||||
no_kv_offload = inst.no_kv_offload;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
tensor_split = inst.tensor_split;
|
||||
use_mmap = inst.use_mmap;
|
||||
n_prompt = inst.n_prompt;
|
||||
@ -713,7 +690,7 @@ struct test {
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload",
|
||||
"mul_mat_q", "tensor_split", "use_mmap",
|
||||
"tensor_split", "use_mmap",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts"
|
||||
@ -733,7 +710,7 @@ struct test {
|
||||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
|
||||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "mul_mat_q" || field == "use_mmap") {
|
||||
field == "use_mmap") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
@ -767,7 +744,7 @@ struct test {
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload),
|
||||
std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
|
||||
tensor_split_str, std::to_string(use_mmap),
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
@ -931,9 +908,6 @@ struct markdown_printer : public printer {
|
||||
if (field == "n_threads") {
|
||||
return "threads";
|
||||
}
|
||||
if (field == "mul_mat_q") {
|
||||
return "mmq";
|
||||
}
|
||||
if (field == "no_kv_offload") {
|
||||
return "nkvo";
|
||||
}
|
||||
@ -974,9 +948,6 @@ struct markdown_printer : public printer {
|
||||
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
|
||||
fields.emplace_back("split_mode");
|
||||
}
|
||||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||
fields.emplace_back("mul_mat_q");
|
||||
}
|
||||
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
|
||||
fields.emplace_back("no_kv_offload");
|
||||
}
|
||||
|
@ -21,12 +21,8 @@ android {
|
||||
useSupportLibrary = true
|
||||
}
|
||||
ndk {
|
||||
// Workaround for https://github.com/llvm/llvm-project/issues/65820
|
||||
// affecting armeabi-v7a. Skip armeabi-v7a when invoked with
|
||||
// -Pskip-armeabi-v7a (e.g., ./gradlew build -Pskip-armeabi-v7a).
|
||||
if (project.hasProperty("skip-armeabi-v7a")) {
|
||||
abiFilters += listOf("arm64-v8a", "x86_64", "x86")
|
||||
}
|
||||
// Add NDK properties if wanted, e.g.
|
||||
// abiFilters += listOf("arm64-v8a")
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
|
@ -59,14 +59,39 @@ python ./convert.py ../llava-v1.5-7b --skip-unknown
|
||||
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
|
||||
|
||||
## LLaVA 1.6 gguf conversion
|
||||
|
||||
1) Backup your pth/safetensor model files as llava-surgery modifies them
|
||||
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
1) First clone a LLaVA 1.6 model:
|
||||
```console
|
||||
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
||||
```
|
||||
2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json.
|
||||
4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision`
|
||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
||||
```console
|
||||
mkdir vit
|
||||
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
|
||||
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
|
||||
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
||||
```
|
||||
|
||||
4) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
5) Everything else as usual: convert.py the hf model, quantize as needed
|
||||
|
||||
5) Then convert the model to gguf format:
|
||||
```console
|
||||
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
||||
```
|
||||
|
||||
6) And finally we can run the llava-cli using the 1.6 model version:
|
||||
```console
|
||||
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
|
||||
```
|
||||
|
||||
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
||||
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
|
||||
|
||||
|
@ -616,9 +616,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
|
||||
KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3));
|
||||
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size));
|
||||
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
|
||||
}
|
||||
|
||||
// attention output
|
||||
|
@ -65,9 +65,7 @@ def clean_vision_tower_from_checkpoint(checkpoint_path):
|
||||
for name in clip_tensors:
|
||||
del checkpoint[name]
|
||||
|
||||
# Save the updated checkpoint
|
||||
checkpoint_path = checkpoint_path
|
||||
save_model(checkpoint, checkpoint_path, file_type)
|
||||
return True
|
||||
return False
|
||||
|
||||
@ -152,16 +150,6 @@ for name in first_mm_tensors:
|
||||
if len(projector) > 0:
|
||||
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
|
||||
|
||||
for name in mm_tensors:
|
||||
del last_checkpoint[name]
|
||||
for name in first_mm_tensors:
|
||||
del first_checkpoint[name]
|
||||
|
||||
if len(mm_tensors) > 0:
|
||||
save_model(last_checkpoint, projector_checkpoint_path, file_type)
|
||||
if len(first_mm_tensors) > 0:
|
||||
save_model(first_checkpoint, newline_checkpoint_path, file_type)
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|
||||
|
@ -152,7 +152,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
|
||||
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||
if (newline_tmp->backend != GGML_BACKEND_CPU) {
|
||||
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
||||
if (newline_tmp->buffer == NULL) {
|
||||
printf("newline_tmp tensor buffer is NULL\n");
|
||||
}
|
||||
@ -311,7 +311,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
||||
if (!image_embd) {
|
||||
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
||||
|
@ -31,6 +31,8 @@ struct llava_image_embed {
|
||||
/** sanity check for clip <-> llava embed size match */
|
||||
LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
|
||||
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
|
||||
|
||||
/** build an image embed from image file bytes */
|
||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
||||
/** build an image embed from a path to an image filename */
|
||||
|
@ -334,6 +334,8 @@ int main(int argc, char ** argv) {
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
} else {
|
||||
params.n_keep += add_bos; // always keep the BOS token
|
||||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
@ -383,8 +385,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||
if (params.n_keep > add_bos) {
|
||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
@ -540,14 +542,14 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
@ -574,9 +576,9 @@ int main(int argc, char ** argv) {
|
||||
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
|
||||
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
|
||||
|
||||
llama_kv_cache_seq_shift(ctx, 0, ga_i, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div (ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
|
||||
llama_kv_cache_seq_shift(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
|
||||
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
|
||||
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
|
||||
|
||||
n_past -= bd;
|
||||
|
||||
|
@ -126,7 +126,7 @@ int main(int argc, char ** argv) {
|
||||
const int n_batch = ctx_params.n_batch;
|
||||
const int n_batch_grp = ctx_params.n_batch/n_grp;
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
@ -146,10 +146,11 @@ int main(int argc, char ** argv) {
|
||||
const int ib = i/n_batch - 1;
|
||||
const int bd = n_batch_grp*(n_grp - 1);
|
||||
|
||||
llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
llama_kv_cache_update (ctx);
|
||||
|
||||
n_past -= bd;
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
@ -179,10 +180,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_cache_defrag (ctx);
|
||||
llama_kv_cache_update (ctx);
|
||||
|
||||
n_past -= n_discard;
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
@ -208,10 +211,12 @@ int main(int argc, char ** argv) {
|
||||
if (n_discard > 0) {
|
||||
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_cache_defrag (ctx);
|
||||
llama_kv_cache_update (ctx);
|
||||
|
||||
n_past -= n_discard;
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -23,15 +23,21 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
@ -289,6 +295,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
|
@ -1,11 +1,24 @@
|
||||
# llama.cpp/example/server
|
||||
# LLaMA.cpp HTTP Server
|
||||
|
||||
This example demonstrates a simple HTTP API server and a simple web front end to interact with llama.cpp.
|
||||
Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/yhirose/cpp-httplib), [nlohmann::json](https://github.com/nlohmann/json) and **llama.cpp**.
|
||||
|
||||
Command line options:
|
||||
Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
|
||||
|
||||
**Features:**
|
||||
* LLM inference of F16 and quantum models on GPU and CPU
|
||||
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
|
||||
* Parallel decoding with multi-user support
|
||||
* Continuous batching
|
||||
* Multimodal (wip)
|
||||
* Monitoring endpoints
|
||||
|
||||
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
@ -39,8 +52,12 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1)
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, default: enabled.
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
|
||||
|
||||
## Build
|
||||
|
||||
@ -97,6 +114,12 @@ curl --request POST \
|
||||
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
|
||||
```
|
||||
|
||||
## Advanced testing
|
||||
|
||||
We implemented a [server test framework](./tests/README.md) using human-readable scenario.
|
||||
|
||||
*Before submitting an issue, please try to reproduce it with this format.*
|
||||
|
||||
## Node JS Test
|
||||
|
||||
You need to have [Node.js](https://nodejs.org/en) installed.
|
||||
@ -134,10 +157,13 @@ node index.js
|
||||
## API Endpoints
|
||||
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
- `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available
|
||||
- 503 -> `{"status": "loading model"}` if the model is still being loaded.
|
||||
- 500 -> `{"status": "error"}` if the model failed to load.
|
||||
- 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available.
|
||||
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slot are currently available.
|
||||
|
||||
If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set.
|
||||
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
|
||||
@ -147,7 +173,7 @@ node index.js
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||
|
||||
`dynatemp_range`: Dynamic temperature range (default: 0.0, 0.0 = disabled).
|
||||
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` (default: 0.0, 0.0 = disabled).
|
||||
|
||||
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
|
||||
|
||||
@ -205,7 +231,7 @@ node index.js
|
||||
|
||||
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||
|
||||
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
|
||||
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false)
|
||||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
@ -238,7 +264,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||
- `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
|
||||
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`
|
||||
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.).
|
||||
- `model`: The path to the model loaded with `-m`
|
||||
- `prompt`: The provided `prompt`
|
||||
- `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
|
||||
@ -300,7 +326,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
|
||||
|
||||
*Options:*
|
||||
|
||||
@ -447,6 +473,18 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
]
|
||||
```
|
||||
|
||||
- **GET** `/metrics`: [Prometheus](https://prometheus.io/) compatible metrics exporter endpoint if `--metrics` is enabled:
|
||||
|
||||
Available metrics:
|
||||
- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed.
|
||||
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
|
||||
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
|
||||
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
|
||||
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage.
|
||||
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
|
||||
- `llamacpp:requests_processing`: Number of request processing.
|
||||
- `llamacpp:requests_deferred`: Number of request deferred.
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
@ -490,20 +528,7 @@ bash chat.sh
|
||||
|
||||
### API like OAI
|
||||
|
||||
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
|
||||
This example must be used with server.cpp
|
||||
|
||||
```sh
|
||||
python api_like_OAI.py
|
||||
```
|
||||
|
||||
After running the API server, you can use it in Python by setting the API base URL.
|
||||
|
||||
```python
|
||||
openai.api_base = "http://<Your api-server IP>:port"
|
||||
```
|
||||
|
||||
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API
|
||||
The HTTP server supports OAI-like API
|
||||
|
||||
### Extending or building alternative Web Front End
|
||||
|
||||
|
@ -1,228 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
from flask import Flask, jsonify, request, Response
|
||||
import urllib.parse
|
||||
import requests
|
||||
import time
|
||||
import json
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
slot_id = -1
|
||||
|
||||
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
|
||||
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')
|
||||
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ")
|
||||
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ")
|
||||
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ")
|
||||
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
|
||||
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
|
||||
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
|
||||
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
|
||||
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
def is_present(json, key):
|
||||
try:
|
||||
buf = json[key]
|
||||
except KeyError:
|
||||
return False
|
||||
if json[key] == None:
|
||||
return False
|
||||
return True
|
||||
|
||||
#convert chat to prompt
|
||||
def convert_chat(messages):
|
||||
|
||||
system_n = args.system_name
|
||||
user_n = args.user_name
|
||||
ai_n = args.ai_name
|
||||
stop = args.stop
|
||||
|
||||
prompt = "" + args.chat_prompt + stop
|
||||
|
||||
for line in messages:
|
||||
if (line["role"] == "system"):
|
||||
prompt += f"{system_n}{line['content']}{stop}"
|
||||
if (line["role"] == "user"):
|
||||
prompt += f"{user_n}{line['content']}{stop}"
|
||||
if (line["role"] == "assistant"):
|
||||
prompt += f"{ai_n}{line['content']}{stop}"
|
||||
prompt += ai_n.rstrip()
|
||||
|
||||
return prompt
|
||||
|
||||
def make_postData(body, chat=False, stream=False):
|
||||
postData = {}
|
||||
if (chat):
|
||||
postData["prompt"] = convert_chat(body["messages"])
|
||||
else:
|
||||
postData["prompt"] = body["prompt"]
|
||||
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
|
||||
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
|
||||
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
|
||||
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
|
||||
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
|
||||
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
|
||||
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
|
||||
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
|
||||
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
|
||||
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
|
||||
if(is_present(body, "seed")): postData["seed"] = body["seed"]
|
||||
if(is_present(body, "grammar")): postData["grammar"] = body["grammar"]
|
||||
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
|
||||
if (args.stop != ""):
|
||||
postData["stop"] = [args.stop]
|
||||
else:
|
||||
postData["stop"] = []
|
||||
if(is_present(body, "stop")): postData["stop"] += body["stop"]
|
||||
postData["n_keep"] = -1
|
||||
postData["stream"] = stream
|
||||
postData["cache_prompt"] = True
|
||||
postData["slot_id"] = slot_id
|
||||
return postData
|
||||
|
||||
def make_resData(data, chat=False, promptToken=[]):
|
||||
resData = {
|
||||
"id": "chatcmpl" if (chat) else "cmpl",
|
||||
"object": "chat.completion" if (chat) else "text_completion",
|
||||
"created": int(time.time()),
|
||||
"truncated": data["truncated"],
|
||||
"model": "LLaMA_CPP",
|
||||
"usage": {
|
||||
"prompt_tokens": data["tokens_evaluated"],
|
||||
"completion_tokens": data["tokens_predicted"],
|
||||
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
|
||||
}
|
||||
}
|
||||
if (len(promptToken) != 0):
|
||||
resData["promptToken"] = promptToken
|
||||
if (chat):
|
||||
#only one choice is supported
|
||||
resData["choices"] = [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": data["content"],
|
||||
},
|
||||
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
}]
|
||||
else:
|
||||
#only one choice is supported
|
||||
resData["choices"] = [{
|
||||
"text": data["content"],
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
}]
|
||||
return resData
|
||||
|
||||
def make_resData_stream(data, chat=False, time_now = 0, start=False):
|
||||
resData = {
|
||||
"id": "chatcmpl" if (chat) else "cmpl",
|
||||
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
|
||||
"created": time_now,
|
||||
"model": "LLaMA_CPP",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": None,
|
||||
"index": 0
|
||||
}
|
||||
]
|
||||
}
|
||||
slot_id = data.get("slot_id")
|
||||
if (chat):
|
||||
if (start):
|
||||
resData["choices"][0]["delta"] = {
|
||||
"role": "assistant"
|
||||
}
|
||||
else:
|
||||
resData["choices"][0]["delta"] = {
|
||||
"content": data["content"]
|
||||
}
|
||||
if (data["stop"]):
|
||||
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
else:
|
||||
resData["choices"][0]["text"] = data["content"]
|
||||
if (data["stop"]):
|
||||
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
|
||||
return resData
|
||||
|
||||
|
||||
@app.route('/chat/completions', methods=['POST', 'OPTIONS'])
|
||||
@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
|
||||
def chat_completions():
|
||||
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||
return Response(status=403)
|
||||
if request.method == 'OPTIONS':
|
||||
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
body = request.get_json()
|
||||
stream = False
|
||||
tokenize = False
|
||||
if(is_present(body, "stream")): stream = body["stream"]
|
||||
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||
postData = make_postData(body, chat=True, stream=stream)
|
||||
|
||||
promptToken = []
|
||||
if (tokenize):
|
||||
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||
promptToken = tokenData["tokens"]
|
||||
|
||||
if (not stream):
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||
print(data.json())
|
||||
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
|
||||
return jsonify(resData)
|
||||
else:
|
||||
def generate():
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||
time_now = int(time.time())
|
||||
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
|
||||
yield 'data: {}\n\n'.format(json.dumps(resData))
|
||||
for line in data.iter_lines():
|
||||
if line:
|
||||
decoded_line = line.decode('utf-8')
|
||||
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
|
||||
yield 'data: {}\n\n'.format(json.dumps(resData))
|
||||
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
|
||||
|
||||
@app.route('/completions', methods=['POST', 'OPTIONS'])
|
||||
@app.route('/v1/completions', methods=['POST', 'OPTIONS'])
|
||||
def completion():
|
||||
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||
return Response(status=403)
|
||||
if request.method == 'OPTIONS':
|
||||
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
body = request.get_json()
|
||||
stream = False
|
||||
tokenize = False
|
||||
if(is_present(body, "stream")): stream = body["stream"]
|
||||
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||
postData = make_postData(body, chat=False, stream=stream)
|
||||
|
||||
promptToken = []
|
||||
if (tokenize):
|
||||
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||
promptToken = tokenData["tokens"]
|
||||
|
||||
if (not stream):
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||
print(data.json())
|
||||
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
|
||||
return jsonify(resData)
|
||||
else:
|
||||
def generate():
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||
time_now = int(time.time())
|
||||
for line in data.iter_lines():
|
||||
if line:
|
||||
decoded_line = line.decode('utf-8')
|
||||
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
|
||||
yield 'data: {}\n\n'.format(json.dumps(resData))
|
||||
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(args.host, port=args.port)
|
@ -15,13 +15,11 @@
|
||||
using json = nlohmann::json;
|
||||
|
||||
inline static json oaicompat_completion_params_parse(
|
||||
const struct llama_model * model,
|
||||
const json &body, /* openai api json semantics */
|
||||
const std::string &chat_template)
|
||||
{
|
||||
json llama_params;
|
||||
std::string formatted_prompt = chat_template == "chatml"
|
||||
? format_chatml(body["messages"]) // OpenAI 'messages' to chatml (with <|im_start|>,...)
|
||||
: format_llama2(body["messages"]); // OpenAI 'messages' to llama2 (with [INST],...)
|
||||
|
||||
llama_params["__oaicompat"] = true;
|
||||
|
||||
@ -34,7 +32,7 @@ inline static json oaicompat_completion_params_parse(
|
||||
// https://platform.openai.com/docs/api-reference/chat/create
|
||||
llama_sampling_params default_sparams;
|
||||
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
||||
llama_params["prompt"] = formatted_prompt;
|
||||
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
||||
|
File diff suppressed because it is too large
Load Diff
67
examples/server/tests/README.md
Normal file
67
examples/server/tests/README.md
Normal file
@ -0,0 +1,67 @@
|
||||
# Server tests
|
||||
|
||||
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development)
|
||||
and [behave](https://behave.readthedocs.io/en/latest/):
|
||||
|
||||
* [issues.feature](./features/issues.feature) Pending issues scenario
|
||||
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
|
||||
* [security.feature](./features/security.feature) Security, CORS and API Key
|
||||
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
|
||||
|
||||
Tests target GitHub workflows job runners with 4 vCPU.
|
||||
|
||||
Requests are
|
||||
using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html)
|
||||
based http client.
|
||||
|
||||
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail.
|
||||
To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
|
||||
### Install dependencies
|
||||
|
||||
`pip install -r requirements.txt`
|
||||
|
||||
### Run tests
|
||||
|
||||
1. Build the server
|
||||
|
||||
```shell
|
||||
cd ../../..
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ../
|
||||
cmake --build . --target server
|
||||
```
|
||||
|
||||
2. Start the test: `./tests.sh`
|
||||
|
||||
It's possible to override some scenario steps values with environment variables:
|
||||
|
||||
| variable | description |
|
||||
|--------------------------|------------------------------------------------------------------------------------------------|
|
||||
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
|
||||
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/server` |
|
||||
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
|
||||
| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format |
|
||||
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
|
||||
|
||||
### Run @bug, @wip or @wrong_usage annotated scenario
|
||||
|
||||
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
|
||||
|
||||
- `@bug` annotation aims to link a scenario with a GitHub issue.
|
||||
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
|
||||
- `@wip` to focus on a scenario working in progress
|
||||
- `@slow` heavy test, disabled by default
|
||||
|
||||
To run a scenario annotated with `@bug`, start:
|
||||
|
||||
```shell
|
||||
DEBUG=ON ./tests.sh --no-skipped --tags bug
|
||||
```
|
||||
|
||||
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
|
||||
|
||||
```shell
|
||||
./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile"
|
||||
```
|
72
examples/server/tests/features/environment.py
Normal file
72
examples/server/tests/features/environment.py
Normal file
@ -0,0 +1,72 @@
|
||||
import os
|
||||
import socket
|
||||
import subprocess
|
||||
import time
|
||||
from contextlib import closing
|
||||
from signal import SIGKILL
|
||||
|
||||
|
||||
def before_scenario(context, scenario):
|
||||
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
|
||||
if context.debug:
|
||||
print("DEBUG=ON\n")
|
||||
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n")
|
||||
port = 8080
|
||||
if 'PORT' in os.environ:
|
||||
port = int(os.environ['PORT'])
|
||||
if is_server_listening("localhost", port):
|
||||
assert False, "Server already started"
|
||||
|
||||
|
||||
def after_scenario(context, scenario):
|
||||
if context.server_process is None:
|
||||
return
|
||||
if scenario.status == "failed":
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
|
||||
if os.path.isfile('llama.log'):
|
||||
with closing(open('llama.log', 'r')) as f:
|
||||
for line in f:
|
||||
print(line)
|
||||
if not is_server_listening(context.server_fqdn, context.server_port):
|
||||
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
|
||||
|
||||
if not pid_exists(context.server_process.pid):
|
||||
assert False, f"Server not running pid={context.server_process.pid} ..."
|
||||
|
||||
print(f"stopping server pid={context.server_process.pid} ...")
|
||||
context.server_process.kill()
|
||||
# Wait few for socket to free up
|
||||
time.sleep(0.05)
|
||||
|
||||
attempts = 0
|
||||
while is_server_listening(context.server_fqdn, context.server_port):
|
||||
print(f"stopping server pid={context.server_process.pid} ...")
|
||||
os.kill(context.server_process.pid, SIGKILL)
|
||||
time.sleep(0.1)
|
||||
attempts += 1
|
||||
if attempts > 5:
|
||||
print(f"Server dangling exits, killing all {context.server_path} ...")
|
||||
process = subprocess.run(['killall', '-9', context.server_path],
|
||||
stderr=subprocess.PIPE,
|
||||
universal_newlines=True)
|
||||
print(process)
|
||||
|
||||
|
||||
def is_server_listening(server_fqdn, server_port):
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((server_fqdn, server_port))
|
||||
return result == 0
|
||||
|
||||
|
||||
def pid_exists(pid):
|
||||
"""Check whether pid exists in the current process table."""
|
||||
import errno
|
||||
if pid < 0:
|
||||
return False
|
||||
try:
|
||||
os.kill(pid, 0)
|
||||
except OSError as e:
|
||||
return e.errno == errno.EPERM
|
||||
else:
|
||||
return True
|
5
examples/server/tests/features/issues.feature
Normal file
5
examples/server/tests/features/issues.feature
Normal file
@ -0,0 +1,5 @@
|
||||
# List of ongoing issues
|
||||
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
|
||||
@bug
|
||||
Feature: Issues
|
||||
# No confirmed issue at the moment
|
146
examples/server/tests/features/parallel.feature
Normal file
146
examples/server/tests/features/parallel.feature
Normal file
@ -0,0 +1,146 @@
|
||||
@llama.cpp
|
||||
@parallel
|
||||
Feature: Parallel
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And 42 as server seed
|
||||
And 512 as batch size
|
||||
And 64 KV cache size
|
||||
And 2 slots
|
||||
And embeddings extraction
|
||||
And continuous batching
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario Outline: Multi users completion
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| n_predict |
|
||||
| 128 |
|
||||
|
||||
Scenario Outline: Multi users OAI completions compatibility
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario Outline: Multi users OAI completions compatibility no v1
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests no v1
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
And 128 max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted
|
||||
|
||||
Scenario: Multi users embeddings
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
Given concurrent embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
||||
|
||||
Scenario: Multi users OAI compatibility embeddings
|
||||
Given a prompt:
|
||||
"""
|
||||
In which country Paris is located ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Is Madrid the capital of Spain ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is the biggest US city ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is the capital of Bulgaria ?
|
||||
"""
|
||||
And a model tinyllama-2
|
||||
Given concurrent OAI embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
55
examples/server/tests/features/passkey.feature
Normal file
55
examples/server/tests/features/passkey.feature
Normal file
@ -0,0 +1,55 @@
|
||||
# run with: ./tests.sh --no-skipped --tags passkey
|
||||
@passkey
|
||||
@slow
|
||||
Feature: Passkey / Self-extend with context shift
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
|
||||
# Generates a long text of junk and inserts a secret passkey number inside it.
|
||||
# Then we query the LLM for the secret passkey.
|
||||
# see #3856 and #4810
|
||||
Scenario Outline: Passkey
|
||||
Given a model file <hf_file> from HF repo <hf_repo>
|
||||
And <n_batch> as batch size
|
||||
And <n_junk> as number of junk
|
||||
And <n_predicted> server max tokens to predict
|
||||
And 42 as seed
|
||||
And <n_ctx> KV cache size
|
||||
And 1 slots
|
||||
And <n_ga> group attention factor to extend context size through self-extend
|
||||
And <n_ga_w> group attention width to extend context size through self-extend
|
||||
# Can be override with N_GPU_LAYERS
|
||||
And <ngl> GPU offloaded layers
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given available models
|
||||
Then model 0 is trained on <n_ctx_train> tokens context
|
||||
Given a prefix prompt:
|
||||
"""
|
||||
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
|
||||
"""
|
||||
And a passkey prompt template:
|
||||
"""
|
||||
The pass key is <passkey> Remember it. <passkey> is the pass key.
|
||||
"""
|
||||
And a junk suffix prompt:
|
||||
"""
|
||||
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
|
||||
"""
|
||||
And a suffix prompt:
|
||||
"""
|
||||
What is the pass key? The pass key is
|
||||
"""
|
||||
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples:
|
||||
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
|
||||
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
|
||||
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
|
||||
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
|
||||
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
|
||||
# 987 |
|
||||
|
51
examples/server/tests/features/security.feature
Normal file
51
examples/server/tests/features/security.feature
Normal file
@ -0,0 +1,51 @@
|
||||
@llama.cpp
|
||||
@security
|
||||
Feature: Security
|
||||
|
||||
Background: Server startup with an api key defined
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a server api key llama.cpp
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario Outline: Completion with some user api key
|
||||
Given a prompt test
|
||||
And a user api key <api_key>
|
||||
And 4 max tokens to predict
|
||||
And a completion request with <api_error> api error
|
||||
|
||||
Examples: Prompts
|
||||
| api_key | api_error |
|
||||
| llama.cpp | no |
|
||||
| llama.cpp | no |
|
||||
| hackeme | raised |
|
||||
| | raised |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a system prompt test
|
||||
And a user prompt test
|
||||
And a model test
|
||||
And 2 max tokens to predict
|
||||
And streaming is disabled
|
||||
And a user api key <api_key>
|
||||
Given an OAI compatible chat completions request with <api_error> api error
|
||||
|
||||
Examples: Prompts
|
||||
| api_key | api_error |
|
||||
| llama.cpp | no |
|
||||
| llama.cpp | no |
|
||||
| hackme | raised |
|
||||
|
||||
|
||||
Scenario Outline: CORS Options
|
||||
When an OPTIONS request is sent from <origin>
|
||||
Then CORS header <cors_header> is set to <cors_header_value>
|
||||
|
||||
Examples: Headers
|
||||
| origin | cors_header | cors_header_value |
|
||||
| localhost | Access-Control-Allow-Origin | localhost |
|
||||
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
|
||||
| origin | Access-Control-Allow-Credentials | true |
|
||||
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
|
||||
| web.mydomain.fr | Access-Control-Allow-Headers | * |
|
91
examples/server/tests/features/server.feature
Normal file
91
examples/server/tests/features/server.feature
Normal file
@ -0,0 +1,91 @@
|
||||
@llama.cpp
|
||||
@server
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a model alias tinyllama-2
|
||||
And 42 as server seed
|
||||
# KV Cache corresponds to the total amount of tokens
|
||||
# that can be stored across all independent sequences: #4130
|
||||
# see --ctx-size and #5568
|
||||
And 32 KV cache size
|
||||
And 512 as batch size
|
||||
And 1 slots
|
||||
And embeddings extraction
|
||||
And 32 server max tokens to predict
|
||||
And prometheus compatible metrics exposed
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Scenario: Health
|
||||
Then the server is ready
|
||||
And all slots are idle
|
||||
|
||||
Scenario Outline: Completion
|
||||
Given a prompt <prompt>
|
||||
And <n_predict> max tokens to predict
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
And prometheus metrics are exposed
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 8 |
|
||||
| Write a joke about AI | 64 | (park\|friends\|scared\|always)+ | 32 |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a model <model>
|
||||
And a system prompt <system_prompt>
|
||||
And a user prompt <user_prompt>
|
||||
And <max_tokens> max tokens to predict
|
||||
And streaming is <enable_streaming>
|
||||
Given an OAI compatible chat completions request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples: Prompts
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
|
||||
| llama-2 | Book | What is the best book | 8 | (Mom\|what)+ | 8 | disabled |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks\|happy\|bird)+ | 32 | enabled |
|
||||
|
||||
Scenario: Embedding
|
||||
When embeddings are computed for:
|
||||
"""
|
||||
What is the capital of Bulgaria ?
|
||||
"""
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: OAI Embeddings compatibility
|
||||
Given a model tinyllama-2
|
||||
When an OAI compatible embeddings computation request for:
|
||||
"""
|
||||
What is the capital of Spain ?
|
||||
"""
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: OAI Embeddings compatibility with multiple inputs
|
||||
Given a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
In which country Paris is located ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Is Madrid the capital of Spain ?
|
||||
"""
|
||||
When an OAI compatible embeddings computation request for multiple inputs
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: Tokenize / Detokenize
|
||||
When tokenizing:
|
||||
"""
|
||||
What is the capital of France ?
|
||||
"""
|
||||
Then tokens can be detokenize
|
||||
|
||||
Scenario: Models available
|
||||
Given available models
|
||||
Then 1 models are supported
|
||||
Then model 0 is identified by tinyllama-2
|
||||
Then model 0 is trained on 128 tokens context
|
970
examples/server/tests/features/steps/steps.py
Normal file
970
examples/server/tests/features/steps/steps.py
Normal file
@ -0,0 +1,970 @@
|
||||
import asyncio
|
||||
import collections
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import socket
|
||||
import subprocess
|
||||
import time
|
||||
from contextlib import closing
|
||||
from re import RegexFlag
|
||||
|
||||
import aiohttp
|
||||
import openai
|
||||
from behave import step
|
||||
from behave.api.async_step import async_run_until_complete
|
||||
from huggingface_hub import hf_hub_download
|
||||
from prometheus_client import parser
|
||||
|
||||
|
||||
@step(u"a server listening on {server_fqdn}:{server_port}")
|
||||
def step_server_config(context, server_fqdn, server_port):
|
||||
context.server_fqdn = server_fqdn
|
||||
context.server_port = int(server_port)
|
||||
if 'PORT' in os.environ:
|
||||
context.server_port = int(os.environ['PORT'])
|
||||
print(f"$PORT set, overriding server port with to {context.server_port}")
|
||||
|
||||
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
||||
|
||||
context.model_alias = None
|
||||
context.n_batch = None
|
||||
context.n_ctx = None
|
||||
context.n_ga = None
|
||||
context.n_ga_w = None
|
||||
context.n_gpu_layer = None
|
||||
context.n_predict = None
|
||||
context.n_server_predict = None
|
||||
context.n_slots = None
|
||||
context.prompt_prefix = None
|
||||
context.prompt_suffix = None
|
||||
context.server_api_key = None
|
||||
context.server_continuous_batching = False
|
||||
context.server_embeddings = False
|
||||
context.server_metrics = False
|
||||
context.server_process = None
|
||||
context.seed = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
|
||||
context.tasks_result = []
|
||||
context.concurrent_tasks = []
|
||||
context.prompts = []
|
||||
|
||||
|
||||
@step(u'a model file {hf_file} from HF repo {hf_repo}')
|
||||
def step_download_hf_model(context, hf_file, hf_repo):
|
||||
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
|
||||
if context.debug:
|
||||
print(f"model file: {context.model_file}\n")
|
||||
|
||||
|
||||
@step(u'a model alias {model_alias}')
|
||||
def step_model_alias(context, model_alias):
|
||||
context.model_alias = model_alias
|
||||
|
||||
|
||||
@step(u'{seed:d} as server seed')
|
||||
def step_seed(context, seed):
|
||||
context.server_seed = seed
|
||||
|
||||
|
||||
@step(u'{ngl:d} GPU offloaded layers')
|
||||
def step_n_gpu_layer(context, ngl):
|
||||
if 'N_GPU_LAYERS' in os.environ:
|
||||
new_ngl = int(os.environ['N_GPU_LAYERS'])
|
||||
if context.debug:
|
||||
print(f"-ngl upgraded from {ngl} to {new_ngl}")
|
||||
ngl = new_ngl
|
||||
context.n_gpu_layer = ngl
|
||||
|
||||
|
||||
@step(u'{n_ctx:d} KV cache size')
|
||||
def step_n_ctx(context, n_ctx):
|
||||
context.n_ctx = n_ctx
|
||||
|
||||
|
||||
@step(u'{n_slots:d} slots')
|
||||
def step_n_slots(context, n_slots):
|
||||
context.n_slots = n_slots
|
||||
|
||||
|
||||
@step(u'{n_predict:d} server max tokens to predict')
|
||||
def step_server_n_predict(context, n_predict):
|
||||
context.n_server_predict = n_predict
|
||||
|
||||
|
||||
@step(u'continuous batching')
|
||||
def step_server_continuous_batching(context):
|
||||
context.server_continuous_batching = True
|
||||
|
||||
|
||||
@step(u'embeddings extraction')
|
||||
def step_server_embeddings(context):
|
||||
context.server_embeddings = True
|
||||
|
||||
|
||||
@step(u'prometheus compatible metrics exposed')
|
||||
def step_server_metrics(context):
|
||||
context.server_metrics = True
|
||||
|
||||
|
||||
@step(u"the server is starting")
|
||||
def step_start_server(context):
|
||||
start_server_background(context)
|
||||
attempts = 0
|
||||
while True:
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((context.server_fqdn, context.server_port))
|
||||
if result == 0:
|
||||
print("\x1b[33;46mserver started!\x1b[0m")
|
||||
return
|
||||
attempts += 1
|
||||
if attempts > 20:
|
||||
assert False, "server not started"
|
||||
print(f"waiting for server to start, connect error code = {result}...")
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
@step(u"the server is {expecting_status}")
|
||||
@async_run_until_complete
|
||||
async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
match expecting_status:
|
||||
case 'healthy':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok')
|
||||
|
||||
case 'ready' | 'idle':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||
timeout=10,
|
||||
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
||||
slots_idle=context.n_slots,
|
||||
slots_processing=0,
|
||||
expected_slots=[{'id': slot_id, 'state': 0}
|
||||
for slot_id in
|
||||
range(context.n_slots if context.n_slots else 1)])
|
||||
case 'busy':
|
||||
await wait_for_health_status(context, context.base_url, 503,
|
||||
'no slot available',
|
||||
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
||||
slots_idle=0,
|
||||
slots_processing=context.n_slots,
|
||||
expected_slots=[{'id': slot_id, 'state': 1}
|
||||
for slot_id in
|
||||
range(context.n_slots if context.n_slots else 1)])
|
||||
case _:
|
||||
assert False, "unknown status"
|
||||
|
||||
|
||||
@step(u'all slots are {expected_slot_status_string}')
|
||||
@async_run_until_complete
|
||||
async def step_all_slots_status(context, expected_slot_status_string):
|
||||
match expected_slot_status_string:
|
||||
case 'idle':
|
||||
expected_slot_status = 0
|
||||
case 'busy':
|
||||
expected_slot_status = 1
|
||||
case _:
|
||||
assert False, "unknown status"
|
||||
|
||||
expected_slots = [{'id': slot_id, 'state': expected_slot_status}
|
||||
for slot_id in range(context.n_slots)]
|
||||
await request_slots_status(context, expected_slots)
|
||||
|
||||
|
||||
@step(u'a completion request with {api_error} api error')
|
||||
@async_run_until_complete
|
||||
async def step_request_completion(context, api_error):
|
||||
expect_api_error = api_error == 'raised'
|
||||
completion = await request_completion(context.prompts.pop(),
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
n_predict=context.n_predict,
|
||||
seed=await completions_seed(context),
|
||||
expect_api_error=expect_api_error,
|
||||
user_api_key=context.user_api_key)
|
||||
context.tasks_result.append(completion)
|
||||
if context.debug:
|
||||
print(f"Completion response: {completion}\n")
|
||||
if expect_api_error:
|
||||
assert completion == 401, f"completion must be an 401 status code: {completion}"
|
||||
|
||||
|
||||
@step(u'{predicted_n:d} tokens are predicted matching {re_content}')
|
||||
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n, re_content)
|
||||
|
||||
|
||||
@step(u'{predicted_n:d} tokens are predicted')
|
||||
def step_n_tokens_predicted(context, predicted_n):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n)
|
||||
|
||||
|
||||
@step(u'a user prompt {user_prompt}')
|
||||
def step_user_prompt(context, user_prompt):
|
||||
context.prompts.append(user_prompt)
|
||||
|
||||
|
||||
@step(u'a system prompt {system_prompt}')
|
||||
def step_system_prompt(context, system_prompt):
|
||||
context.system_prompt = system_prompt
|
||||
|
||||
|
||||
@step(u'a model {model}')
|
||||
def step_model(context, model):
|
||||
context.model = model
|
||||
|
||||
|
||||
@step(u'{max_tokens:d} max tokens to predict')
|
||||
def step_max_tokens(context, max_tokens):
|
||||
context.n_predict = max_tokens
|
||||
|
||||
|
||||
@step(u'streaming is {enable_streaming}')
|
||||
def step_streaming(context, enable_streaming):
|
||||
context.enable_streaming = enable_streaming == 'enabled'
|
||||
|
||||
|
||||
@step(u'a user api key {user_api_key}')
|
||||
def step_user_api_key(context, user_api_key):
|
||||
context.user_api_key = user_api_key
|
||||
|
||||
|
||||
@step(u'no user api key')
|
||||
def step_no_user_api_key(context):
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'a user api key ')
|
||||
def step_no_user_api_key_space(context):
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'a server api key {server_api_key}')
|
||||
def step_server_api_key(context, server_api_key):
|
||||
context.server_api_key = server_api_key
|
||||
|
||||
|
||||
@step(u'{n_junk:d} as number of junk')
|
||||
def step_n_junk(context, n_junk):
|
||||
context.n_junk = n_junk
|
||||
|
||||
|
||||
@step(u'{n_batch:d} as batch size')
|
||||
def step_n_batch(context, n_batch):
|
||||
context.n_batch = n_batch
|
||||
|
||||
|
||||
@step(u'{seed:d} as seed')
|
||||
def step_seed(context, seed):
|
||||
context.seed = seed
|
||||
|
||||
|
||||
@step(u'a prefix prompt')
|
||||
def step_prompt_prefix(context):
|
||||
context.prompt_prefix = context.text
|
||||
|
||||
|
||||
@step(u'a junk suffix prompt')
|
||||
def step_prompt_junk_suffix(context):
|
||||
context.prompt_junk_suffix = context.text
|
||||
|
||||
|
||||
@step(u'a suffix prompt')
|
||||
def step_prompt_suffix(context):
|
||||
context.prompt_suffix = context.text
|
||||
|
||||
|
||||
@step(u'{n_ga:d} group attention factor'
|
||||
u' to extend context size through self-extend')
|
||||
def step_impl(context, n_ga):
|
||||
context.n_ga = n_ga
|
||||
|
||||
|
||||
@step(u'{n_ga_w:d} group attention width to extend context size through self-extend')
|
||||
def step_impl(context, n_ga_w):
|
||||
context.n_ga_w = n_ga_w
|
||||
|
||||
|
||||
@step(u'a passkey prompt template')
|
||||
def step_prompt_passkey(context):
|
||||
context.prompt_passkey = context.text
|
||||
|
||||
|
||||
@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
|
||||
def step_prompt_passkey(context, passkey, i_pos):
|
||||
prompt = ""
|
||||
for i in range(context.n_junk):
|
||||
if i % context.n_junk == i_pos:
|
||||
prompt += context.prompt_passkey # the passkey is already substituted
|
||||
prompt += context.prompt_junk_suffix
|
||||
if context.debug:
|
||||
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
|
||||
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
|
||||
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
|
||||
|
||||
|
||||
@step(u'an OAI compatible chat completions request with {api_error} api error')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context, api_error):
|
||||
if context.debug:
|
||||
print(f"Submitting OAI compatible completions request...\n")
|
||||
expect_api_error = api_error == 'raised'
|
||||
completion = await oai_chat_completions(context.prompts.pop(),
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat',
|
||||
False,
|
||||
model=context.model if hasattr(context, 'model') else None,
|
||||
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
|
||||
seed=await completions_seed(context),
|
||||
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None,
|
||||
|
||||
expect_api_error=expect_api_error)
|
||||
context.tasks_result.append(completion)
|
||||
if context.debug:
|
||||
print(f"Completion response: {completion}")
|
||||
if expect_api_error:
|
||||
assert completion == 401, f"completion must be an 401 status code: {completion}"
|
||||
|
||||
if context.debug:
|
||||
print(f"Completion response: {completion}")
|
||||
|
||||
|
||||
@step(u'a prompt')
|
||||
def step_a_prompt(context):
|
||||
context.prompts.append(context.text)
|
||||
|
||||
|
||||
@step(u'a prompt {prompt}')
|
||||
def step_a_prompt_prompt(context, prompt):
|
||||
context.prompts.append(prompt)
|
||||
|
||||
|
||||
@step(u'concurrent completion requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_completion_requests(context):
|
||||
await concurrent_requests(context,
|
||||
request_completion,
|
||||
# prompt is inserted automatically
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
prompt_prefix=context.prompt_prefix,
|
||||
prompt_suffix=context.prompt_suffix,
|
||||
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key if hasattr(context,
|
||||
'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat/completions',
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests no v1')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/chat/completions',
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
seed=context.seed
|
||||
if hasattr(context, 'seed') else
|
||||
context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted')
|
||||
@async_run_until_complete
|
||||
async def step_all_prompts_are_predicted(context):
|
||||
await all_prompts_are_predicted(context)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted with {n_expected_predicted:d} tokens')
|
||||
@async_run_until_complete
|
||||
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
|
||||
await all_prompts_are_predicted(context, n_expected_predicted)
|
||||
|
||||
|
||||
async def all_prompts_are_predicted(context, expected_predicted_n=None):
|
||||
n_completions = await gather_tasks_results(context)
|
||||
assert n_completions > 0
|
||||
for i in range(n_completions):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
|
||||
assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
|
||||
|
||||
|
||||
@step(u'embeddings are computed for')
|
||||
@async_run_until_complete
|
||||
async def step_compute_embedding(context):
|
||||
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'embeddings are generated')
|
||||
def step_assert_embeddings(context):
|
||||
if len(context.prompts) == 0:
|
||||
assert_embeddings(context.embeddings)
|
||||
else:
|
||||
assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n"
|
||||
f"context.prompts={context.prompts}\n"
|
||||
f"context.embeddings={context.embeddings}")
|
||||
for embedding in context.embeddings:
|
||||
context.prompts.pop()
|
||||
assert_embeddings(embedding)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings(context):
|
||||
context.embeddings = await request_oai_embeddings(context.text,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for multiple inputs')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings_multiple_inputs(context):
|
||||
context.embeddings = await request_oai_embeddings(context.prompts,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'concurrent embedding requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_embedding_requests(context):
|
||||
await concurrent_requests(context,
|
||||
request_embedding,
|
||||
# prompt is inserted automatically
|
||||
base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'concurrent OAI embedding requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_oai_embedding_requests(context):
|
||||
await concurrent_requests(context,
|
||||
request_oai_embeddings,
|
||||
# prompt is inserted automatically
|
||||
base_url=context.base_url,
|
||||
async_client=True,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'all embeddings are generated')
|
||||
@async_run_until_complete()
|
||||
async def all_embeddings_are_generated(context):
|
||||
n_embedding_requests = await gather_tasks_results(context)
|
||||
assert n_embedding_requests > 0
|
||||
for i in range(n_embedding_requests):
|
||||
assert_embeddings(context.tasks_result.pop())
|
||||
|
||||
|
||||
@step(u'tokenizing')
|
||||
@async_run_until_complete
|
||||
async def step_tokenize(context):
|
||||
context.tokenized_text = context.text
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/tokenize',
|
||||
json={
|
||||
"content": context.tokenized_text,
|
||||
}) as response:
|
||||
assert response.status == 200
|
||||
tokenize_json = await response.json()
|
||||
context.tokens = tokenize_json['tokens']
|
||||
|
||||
|
||||
@step(u'tokens can be detokenize')
|
||||
@async_run_until_complete
|
||||
async def step_detokenize(context):
|
||||
assert len(context.tokens) > 0
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/detokenize',
|
||||
json={
|
||||
"tokens": context.tokens,
|
||||
}) as response:
|
||||
assert response.status == 200
|
||||
detokenize_json = await response.json()
|
||||
# SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
|
||||
assert context.tokenized_text == detokenize_json['content'].strip()
|
||||
|
||||
|
||||
@step(u'an OPTIONS request is sent from {origin}')
|
||||
@async_run_until_complete
|
||||
async def step_options_request(context, origin):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.options(f'{context.base_url}/v1/chat/completions',
|
||||
headers={"Origin": origin}) as response:
|
||||
assert response.status == 200
|
||||
context.options_response = response
|
||||
|
||||
|
||||
@step(u'CORS header {cors_header} is set to {cors_header_value}')
|
||||
def step_check_options_header_value(context, cors_header, cors_header_value):
|
||||
assert context.options_response.headers[cors_header] == cors_header_value
|
||||
|
||||
|
||||
@step(u'prometheus metrics are exposed')
|
||||
@async_run_until_complete
|
||||
async def step_prometheus_metrics_exported(context):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
|
||||
assert metrics_response.status == 200
|
||||
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
|
||||
metrics_raw = await metrics_response.text()
|
||||
metric_exported = False
|
||||
if context.debug:
|
||||
print(f"/metrics answer:\n{metrics_raw}\n")
|
||||
for metric in parser.text_string_to_metric_families(metrics_raw):
|
||||
match metric.name:
|
||||
case "llamacpp:kv_cache_usage_ratio":
|
||||
assert len(metric.samples) > 0
|
||||
metric_exported = True
|
||||
assert metric_exported, "No metrics exported"
|
||||
|
||||
|
||||
@step(u'available models')
|
||||
def step_available_models(context):
|
||||
# openai client always expects an api_key
|
||||
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
|
||||
openai.api_base = f'{context.base_url}/v1'
|
||||
context.models = openai.Model.list().data
|
||||
|
||||
|
||||
@step(u'{n_model:d} models are supported')
|
||||
def step_supported_models(context, n_model):
|
||||
if context.debug:
|
||||
print("server models available:", context.models)
|
||||
assert len(context.models) == n_model
|
||||
|
||||
|
||||
@step(u'model {i_model:d} is {param} {preposition} {param_value}')
|
||||
def step_supported_models(context, i_model, param, preposition, param_value):
|
||||
assert i_model < len(context.models)
|
||||
model = context.models[i_model]
|
||||
|
||||
param_value = param_value.split(' ', 1)[0]
|
||||
match param:
|
||||
case 'identified':
|
||||
value = model.id
|
||||
case 'trained':
|
||||
value = str(model.meta.n_ctx_train)
|
||||
case _:
|
||||
assert False, "param {param} not supported"
|
||||
assert param_value == value, f"model param {param} {value} != {param_value}"
|
||||
|
||||
|
||||
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
n_prompts = len(context.prompts)
|
||||
if context.debug:
|
||||
print(f"starting {n_prompts} concurrent completion requests...")
|
||||
assert n_prompts > 0
|
||||
for prompt_no in range(n_prompts):
|
||||
shifted_args = [context.prompts.pop(), *args]
|
||||
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
|
||||
async def request_completion(prompt,
|
||||
base_url,
|
||||
debug=False,
|
||||
prompt_prefix=None,
|
||||
prompt_suffix=None,
|
||||
n_predict=None,
|
||||
seed=None,
|
||||
expect_api_error=None,
|
||||
user_api_key=None):
|
||||
if debug:
|
||||
print(f"Sending completion request: {prompt}")
|
||||
origin = "my.super.domain"
|
||||
headers = {
|
||||
'Origin': origin
|
||||
}
|
||||
if user_api_key is not None:
|
||||
if debug:
|
||||
print(f"Set user_api_key: {user_api_key}")
|
||||
headers['Authorization'] = f'Bearer {user_api_key}'
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/completion',
|
||||
json={
|
||||
"input_prefix": prompt_prefix,
|
||||
"prompt": prompt,
|
||||
"input_suffix": prompt_suffix,
|
||||
"n_predict": n_predict if n_predict is not None else -1,
|
||||
"seed": seed if seed is not None else 42
|
||||
},
|
||||
headers=headers,
|
||||
timeout=3600) as response:
|
||||
if expect_api_error is None or not expect_api_error:
|
||||
assert response.status == 200
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
return await response.json()
|
||||
else:
|
||||
return response.status
|
||||
|
||||
|
||||
async def oai_chat_completions(user_prompt,
|
||||
system_prompt,
|
||||
base_url,
|
||||
base_path,
|
||||
async_client,
|
||||
debug=False,
|
||||
model=None,
|
||||
n_predict=None,
|
||||
enable_streaming=None,
|
||||
seed=None,
|
||||
user_api_key=None,
|
||||
expect_api_error=None):
|
||||
if debug:
|
||||
print(f"Sending OAI Chat completions request: {user_prompt}")
|
||||
# openai client always expects an api key
|
||||
user_api_key = user_api_key if user_api_key is not None else 'nope'
|
||||
seed = seed if seed is not None else 42
|
||||
enable_streaming = enable_streaming if enable_streaming is not None else False
|
||||
payload = {
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt,
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": user_prompt,
|
||||
}
|
||||
],
|
||||
"model": model,
|
||||
"max_tokens": n_predict,
|
||||
"stream": enable_streaming,
|
||||
"seed": seed
|
||||
}
|
||||
completion_response = {
|
||||
'content': '',
|
||||
'timings': {
|
||||
'predicted_n': 0
|
||||
}
|
||||
}
|
||||
if async_client:
|
||||
origin = 'llama.cpp'
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}{base_path}',
|
||||
json=payload,
|
||||
headers=headers) as response:
|
||||
if enable_streaming:
|
||||
assert response.status == 200
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
assert response.headers['Content-Type'] == "text/event-stream"
|
||||
event_received = True
|
||||
while event_received:
|
||||
event_received = False
|
||||
async for line_in_bytes in response.content:
|
||||
line = line_in_bytes.decode('utf8')
|
||||
line = line.rstrip('\n').rstrip('\r')
|
||||
if line == '':
|
||||
continue
|
||||
event_data = line.split(': ', 1)
|
||||
assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
|
||||
chunk_raw = event_data[1]
|
||||
|
||||
chunk = json.loads(chunk_raw)
|
||||
assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
|
||||
delta = chunk['choices'][0]['delta']
|
||||
if 'content' in delta:
|
||||
completion_response['content'] += delta['content']
|
||||
completion_response['timings']['predicted_n'] += 1
|
||||
else:
|
||||
if expect_api_error is None or not expect_api_error:
|
||||
assert response.status == 200
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
|
||||
chat_completion_raw = await response.json()
|
||||
completion_response = {
|
||||
'content': chat_completion_raw['choices'][0]['message'],
|
||||
'timings': {
|
||||
'predicted_n': chat_completion_raw['usage']['completion_tokens']
|
||||
}
|
||||
}
|
||||
else:
|
||||
return response.status
|
||||
else:
|
||||
try:
|
||||
openai.api_key = user_api_key
|
||||
openai.api_base = f'{base_url}{base_path}'
|
||||
chat_completion = openai.Completion.create(
|
||||
messages=payload['messages'],
|
||||
model=model,
|
||||
max_tokens=n_predict,
|
||||
stream=enable_streaming,
|
||||
seed=seed
|
||||
)
|
||||
except openai.error.APIError as e:
|
||||
if expect_api_error is not None and expect_api_error:
|
||||
return 401
|
||||
else:
|
||||
assert False, f'error raised: {e}'
|
||||
|
||||
if enable_streaming:
|
||||
for chunk in chat_completion:
|
||||
assert len(chunk.choices) == 1
|
||||
delta = chunk.choices[0].delta
|
||||
if 'content' in delta:
|
||||
completion_response['content'] += delta['content']
|
||||
completion_response['timings']['predicted_n'] += 1
|
||||
else:
|
||||
assert len(chat_completion.choices) == 1
|
||||
completion_response = {
|
||||
'content': chat_completion.choices[0].message.content,
|
||||
'timings': {
|
||||
'predicted_n': chat_completion.usage.completion_tokens
|
||||
}
|
||||
}
|
||||
if debug:
|
||||
print("OAI response formatted to llama.cpp:", completion_response)
|
||||
return completion_response
|
||||
|
||||
|
||||
async def request_embedding(content, base_url=None):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/embedding',
|
||||
json={
|
||||
"content": content,
|
||||
}) as response:
|
||||
assert response.status == 200
|
||||
response_json = await response.json()
|
||||
return response_json['embedding']
|
||||
|
||||
|
||||
async def request_oai_embeddings(input,
|
||||
base_url=None, user_api_key=None,
|
||||
model=None, async_client=False):
|
||||
# openai client always expects an api_key
|
||||
user_api_key = user_api_key if user_api_key is not None else 'nope'
|
||||
if async_client:
|
||||
origin = 'llama.cpp'
|
||||
if user_api_key is not None:
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/v1/embeddings',
|
||||
json={
|
||||
"input": input,
|
||||
"model": model,
|
||||
},
|
||||
headers=headers) as response:
|
||||
assert response.status == 200, f"received status code not expected: {response.status}"
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
|
||||
response_json = await response.json()
|
||||
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
|
||||
assert response_json['object'] == 'list'
|
||||
return response_json['data']
|
||||
else:
|
||||
openai.api_key = user_api_key
|
||||
openai.api_base = f'{base_url}/v1'
|
||||
oai_embeddings = openai.Embedding.create(
|
||||
model=model,
|
||||
input=input,
|
||||
)
|
||||
|
||||
if isinstance(input, collections.abc.Sequence):
|
||||
embeddings = []
|
||||
for an_oai_embeddings in oai_embeddings.data:
|
||||
embeddings.append(an_oai_embeddings.embedding)
|
||||
else:
|
||||
embeddings = oai_embeddings.data.embedding
|
||||
return embeddings
|
||||
|
||||
|
||||
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
|
||||
content = completion_response['content']
|
||||
n_predicted = completion_response['timings']['predicted_n']
|
||||
assert len(content) > 0, "no token predicted"
|
||||
if re_content is not None:
|
||||
p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
|
||||
matches = p.finditer(content)
|
||||
last_match = 0
|
||||
highlighted = ''
|
||||
for match in matches:
|
||||
start, end = match.span()
|
||||
highlighted += content[last_match: start]
|
||||
highlighted += '\x1b[33m'
|
||||
highlighted += content[start: end]
|
||||
highlighted += '\x1b[0m'
|
||||
last_match = end
|
||||
highlighted += content[last_match:]
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"Checking completion response: {highlighted}\n")
|
||||
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
|
||||
if expected_predicted_n and expected_predicted_n > 0:
|
||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||
f' {n_predicted} <> {expected_predicted_n}')
|
||||
|
||||
|
||||
|
||||
async def gather_tasks_results(context):
|
||||
n_tasks = len(context.concurrent_tasks)
|
||||
if context.debug:
|
||||
print(f"Waiting for all {n_tasks} tasks results...\n")
|
||||
for task_no in range(n_tasks):
|
||||
context.tasks_result.append(await context.concurrent_tasks.pop())
|
||||
n_completions = len(context.tasks_result)
|
||||
return n_completions
|
||||
|
||||
|
||||
async def wait_for_health_status(context,
|
||||
base_url,
|
||||
expected_http_status_code,
|
||||
expected_health_status,
|
||||
timeout=3,
|
||||
params=None,
|
||||
slots_idle=None,
|
||||
slots_processing=None,
|
||||
expected_slots=None):
|
||||
if context.debug:
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
|
||||
interval = 0.5
|
||||
counter = 0
|
||||
async with aiohttp.ClientSession() as session:
|
||||
while True:
|
||||
async with await session.get(f'{base_url}/health', params=params) as health_response:
|
||||
status_code = health_response.status
|
||||
health = await health_response.json()
|
||||
if context.debug:
|
||||
print(f"HEALTH - response for expected health status='{expected_health_status}' on "
|
||||
f"'{base_url}/health'?{params} is {health}\n")
|
||||
if (status_code == expected_http_status_code
|
||||
and health['status'] == expected_health_status
|
||||
and (slots_idle is None or health['slots_idle'] == slots_idle)
|
||||
and (slots_processing is None or health['slots_processing'] == slots_processing)):
|
||||
if expected_slots is not None:
|
||||
assert_slots_status(health['slots'], expected_slots)
|
||||
return
|
||||
if (status_code == expected_http_status_code
|
||||
and health['status'] == expected_health_status
|
||||
and (slots_idle is None or health['slots_idle'] == slots_idle)
|
||||
and (slots_processing is None or health['slots_processing'] == slots_processing)):
|
||||
if expected_slots is not None:
|
||||
assert_slots_status(health['slots'], expected_slots)
|
||||
return
|
||||
await asyncio.sleep(interval)
|
||||
|
||||
counter += interval
|
||||
if counter >= timeout:
|
||||
# Sometimes health requests are triggered after completions are predicted
|
||||
if expected_http_status_code == 503:
|
||||
if len(context.tasks_result) == 0:
|
||||
print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
|
||||
" busy health check missed, probably too fast inference\x1b[0m\n")
|
||||
n_completions = await gather_tasks_results(context)
|
||||
if n_completions > 0:
|
||||
return
|
||||
|
||||
assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
|
||||
|
||||
|
||||
def assert_embeddings(embeddings):
|
||||
assert len(embeddings) > 0
|
||||
embeddings_computed = False
|
||||
for emb in embeddings:
|
||||
if emb != 0:
|
||||
embeddings_computed = True
|
||||
assert embeddings_computed, f"Embeddings: {embeddings}"
|
||||
|
||||
|
||||
async def request_slots_status(context, expected_slots):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with await session.get(f'{context.base_url}/slots') as slots_response:
|
||||
assert slots_response.status == 200
|
||||
slots = await slots_response.json()
|
||||
assert_slots_status(slots, expected_slots)
|
||||
|
||||
|
||||
def assert_slots_status(slots, expected_slots):
|
||||
assert len(slots) == len(expected_slots)
|
||||
for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
|
||||
for key in expected:
|
||||
assert expected[key] == slot[key], (f"invalid slot {slot_id}"
|
||||
f" expected[{key}] != slot[{key}]"
|
||||
f" = {expected[key]} != {slot[key]}")
|
||||
|
||||
|
||||
async def completions_seed(context):
|
||||
return context.seed if hasattr(context, 'seed') and context.seed is not None \
|
||||
else context.server_seed if hasattr(context, 'server_seed') else None
|
||||
|
||||
|
||||
def start_server_background(context):
|
||||
context.server_path = '../../../build/bin/server'
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||
server_args = [
|
||||
'--host', context.server_fqdn,
|
||||
'--port', context.server_port,
|
||||
'--model', context.model_file
|
||||
]
|
||||
if context.n_batch:
|
||||
server_args.extend(['--batch-size', context.n_batch])
|
||||
if context.n_gpu_layer:
|
||||
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
||||
if context.server_continuous_batching:
|
||||
server_args.append('--cont-batching')
|
||||
if context.server_embeddings:
|
||||
server_args.append('--embedding')
|
||||
if context.server_metrics:
|
||||
server_args.append('--metrics')
|
||||
if context.model_alias:
|
||||
server_args.extend(['--alias', context.model_alias])
|
||||
if context.n_ctx:
|
||||
server_args.extend(['--ctx-size', context.n_ctx])
|
||||
if context.n_slots:
|
||||
server_args.extend(['--parallel', context.n_slots])
|
||||
if context.n_server_predict:
|
||||
server_args.extend(['--n-predict', context.n_server_predict])
|
||||
if context.server_api_key:
|
||||
server_args.extend(['--api-key', context.server_api_key])
|
||||
if context.n_ga:
|
||||
server_args.extend(['--grp-attn-n', context.n_ga])
|
||||
if context.n_ga_w:
|
||||
server_args.extend(['--grp-attn-w', context.n_ga_w])
|
||||
if context.debug:
|
||||
server_args.append('--verbose')
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path} {server_args}\n")
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
close_fds=True)
|
||||
print(f"server pid={context.server_process.pid}")
|
22
examples/server/tests/features/wrong_usages.feature
Normal file
22
examples/server/tests/features/wrong_usages.feature
Normal file
@ -0,0 +1,22 @@
|
||||
# run with: ./tests.sh --no-skipped --tags wrong_usage
|
||||
@wrong_usage
|
||||
Feature: Wrong usage of llama.cpp server
|
||||
|
||||
#3969 The user must always set --n-predict option
|
||||
# to cap the number of tokens any completion request can generate
|
||||
# or pass n_predict/max_tokens in the request.
|
||||
Scenario: Infinite loop
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
# Uncomment below to fix the issue
|
||||
#And 64 server max tokens to predict
|
||||
Then the server is starting
|
||||
Given a prompt:
|
||||
"""
|
||||
Go to: infinite loop
|
||||
"""
|
||||
# Uncomment below to fix the issue
|
||||
#And 128 max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is idle
|
||||
Then all prompts are predicted
|
5
examples/server/tests/requirements.txt
Normal file
5
examples/server/tests/requirements.txt
Normal file
@ -0,0 +1,5 @@
|
||||
aiohttp~=3.9.3
|
||||
behave~=1.2.6
|
||||
huggingface_hub~=0.20.3
|
||||
openai~=0.25.0
|
||||
prometheus-client~=0.20.0
|
12
examples/server/tests/tests.sh
Executable file
12
examples/server/tests/tests.sh
Executable file
@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -eu
|
||||
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
# Start @llama.cpp scenario
|
||||
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
else
|
||||
behave "$@"
|
||||
fi
|
||||
|
@ -14,6 +14,7 @@
|
||||
using json = nlohmann::json;
|
||||
|
||||
extern bool server_verbose;
|
||||
extern bool server_log_json;
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
@ -27,18 +28,14 @@ extern bool server_verbose;
|
||||
{ \
|
||||
if (server_verbose) \
|
||||
{ \
|
||||
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// parallel
|
||||
//
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
@ -49,7 +46,8 @@ enum server_state {
|
||||
enum task_type {
|
||||
TASK_TYPE_COMPLETION,
|
||||
TASK_TYPE_CANCEL,
|
||||
TASK_TYPE_NEXT_RESPONSE
|
||||
TASK_TYPE_NEXT_RESPONSE,
|
||||
TASK_TYPE_METRICS
|
||||
};
|
||||
|
||||
struct task_server {
|
||||
@ -76,51 +74,8 @@ struct task_multi {
|
||||
std::vector<task_result> results{};
|
||||
};
|
||||
|
||||
// TODO: can become bool if we can't find use of more states
|
||||
enum slot_state
|
||||
{
|
||||
IDLE,
|
||||
PROCESSING,
|
||||
};
|
||||
|
||||
enum slot_command
|
||||
{
|
||||
NONE,
|
||||
LOAD_PROMPT,
|
||||
RELEASE,
|
||||
};
|
||||
|
||||
struct slot_params
|
||||
{
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
};
|
||||
|
||||
struct slot_image
|
||||
{
|
||||
int32_t id;
|
||||
|
||||
bool request_encode_image = false;
|
||||
float * image_embedding = nullptr;
|
||||
int32_t image_tokens = 0;
|
||||
|
||||
clip_image_u8 * img_data;
|
||||
|
||||
std::string prefix_prompt; // before of this image
|
||||
};
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output
|
||||
{
|
||||
struct completion_token_output {
|
||||
struct token_prob
|
||||
{
|
||||
llama_token tok;
|
||||
@ -132,26 +87,52 @@ struct completion_token_output
|
||||
std::string text_to_send;
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line,
|
||||
const char *message, const nlohmann::ordered_json &extra)
|
||||
{
|
||||
nlohmann::ordered_json log
|
||||
{
|
||||
struct token_translator {
|
||||
llama_context * ctx;
|
||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
||||
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
|
||||
std::stringstream ss_tid;
|
||||
ss_tid << std::this_thread::get_id();
|
||||
json log = nlohmann::ordered_json{
|
||||
{"tid", ss_tid.str()},
|
||||
{"timestamp", time(nullptr)},
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"message", message},
|
||||
};
|
||||
|
||||
if (!extra.empty())
|
||||
{
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
if (server_log_json) {
|
||||
log.merge_patch(
|
||||
{
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"msg", message},
|
||||
});
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
|
||||
} else {
|
||||
char buf[1024];
|
||||
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
|
||||
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
std::stringstream ss;
|
||||
ss << buf << " |";
|
||||
for (const auto& el : log.items())
|
||||
{
|
||||
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
ss << " " << el.key() << "=" << value;
|
||||
}
|
||||
|
||||
const std::string str = ss.str();
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
@ -159,58 +140,53 @@ static inline void server_log(const char *level, const char *function, int line,
|
||||
//
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value)
|
||||
{
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value) {
|
||||
// Fallback null to default value
|
||||
return body.contains(key) && !body.at(key).is_null()
|
||||
? body.value(key, default_value)
|
||||
: default_value;
|
||||
}
|
||||
|
||||
inline std::string format_llama2(std::vector<json> messages)
|
||||
{
|
||||
std::ostringstream output;
|
||||
bool is_inside_turn = false;
|
||||
|
||||
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
||||
if (!is_inside_turn) {
|
||||
output << "[INST] ";
|
||||
}
|
||||
std::string role = json_value(*it, "role", std::string("user"));
|
||||
std::string content = json_value(*it, "content", std::string(""));
|
||||
if (role == "system") {
|
||||
output << "<<SYS>>\n" << content << "\n<<SYS>>\n\n";
|
||||
is_inside_turn = true;
|
||||
} else if (role == "user") {
|
||||
output << content << " [/INST]";
|
||||
is_inside_turn = true;
|
||||
} else {
|
||||
output << " " << content << " </s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_VERBOSE("format_llama2", {{"text", output.str()}});
|
||||
|
||||
return output.str();
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
inline bool verify_custom_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
std::vector<char> buf(1);
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
inline std::string format_chatml(std::vector<json> messages)
|
||||
{
|
||||
std::ostringstream chatml_msgs;
|
||||
// Format given chat. If tmpl is empty, we take the template from model metadata
|
||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
||||
size_t alloc_size = 0;
|
||||
// vector holding all allocated string to be passed to llama_chat_apply_template
|
||||
std::vector<std::string> str(messages.size() * 2);
|
||||
std::vector<llama_chat_message> chat(messages.size());
|
||||
|
||||
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
||||
chatml_msgs << "<|im_start|>"
|
||||
<< json_value(*it, "role", std::string("user")) << '\n';
|
||||
chatml_msgs << json_value(*it, "content", std::string(""))
|
||||
<< "<|im_end|>\n";
|
||||
for (size_t i = 0; i < messages.size(); ++i) {
|
||||
auto &curr_msg = messages[i];
|
||||
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
|
||||
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
|
||||
alloc_size += str[i*2 + 1].length();
|
||||
chat[i].role = str[i*2 + 0].c_str();
|
||||
chat[i].content = str[i*2 + 1].c_str();
|
||||
}
|
||||
|
||||
chatml_msgs << "<|im_start|>assistant" << '\n';
|
||||
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
|
||||
std::vector<char> buf(alloc_size * 2);
|
||||
|
||||
LOG_VERBOSE("format_chatml", {{"text", chatml_msgs.str()}});
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
|
||||
|
||||
return chatml_msgs.str();
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
|
||||
}
|
||||
|
||||
std::string formatted_chat(buf.data(), res);
|
||||
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
|
||||
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
//
|
||||
@ -229,13 +205,14 @@ struct llama_server_queue {
|
||||
// callback functions
|
||||
std::function<void(task_server&)> callback_new_task;
|
||||
std::function<void(task_multi&)> callback_finish_multitask;
|
||||
std::function<void(void)> callback_all_task_finished;
|
||||
std::function<void(void)> callback_run_slots;
|
||||
|
||||
// Add a new task to the end of the queue
|
||||
int post(task_server task) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", task.id}});
|
||||
}
|
||||
queue_tasks.push_back(std::move(task));
|
||||
condition_tasks.notify_one();
|
||||
@ -251,7 +228,9 @@ struct llama_server_queue {
|
||||
// Get the next id for creating anew task
|
||||
int get_new_id() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
return id++;
|
||||
int new_id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", new_id}});
|
||||
return new_id;
|
||||
}
|
||||
|
||||
// Register function to process a new task
|
||||
@ -259,14 +238,14 @@ struct llama_server_queue {
|
||||
callback_new_task = callback;
|
||||
}
|
||||
|
||||
// Register function to process a multitask
|
||||
// Register function to process a multitask when it is finished
|
||||
void on_finish_multitask(std::function<void(task_multi&)> callback) {
|
||||
callback_finish_multitask = callback;
|
||||
}
|
||||
|
||||
// Register the function to be called when the batch of tasks is finished
|
||||
void on_all_tasks_finished(std::function<void(void)> callback) {
|
||||
callback_all_task_finished = callback;
|
||||
// Register the function to be called when all slots data is ready to be processed
|
||||
void on_run_slots(std::function<void(void)> callback) {
|
||||
callback_run_slots = callback;
|
||||
}
|
||||
|
||||
// Call when the state of one slot is changed
|
||||
@ -288,12 +267,17 @@ struct llama_server_queue {
|
||||
condition_tasks.notify_all();
|
||||
}
|
||||
|
||||
// Start the main loop.
|
||||
/**
|
||||
* Main loop consists of these steps:
|
||||
* - Wait until a new task arrives
|
||||
* - Process the task (i.e. maybe copy data into slot)
|
||||
* - Check if multitask is finished
|
||||
* - Run all slots
|
||||
*/
|
||||
void start_loop() {
|
||||
running = true;
|
||||
while (true) {
|
||||
// new task arrived
|
||||
LOG_VERBOSE("have new task", {});
|
||||
LOG_VERBOSE("new task may arrive", {});
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
@ -305,11 +289,11 @@ struct llama_server_queue {
|
||||
task_server task = queue_tasks.front();
|
||||
queue_tasks.erase(queue_tasks.begin());
|
||||
lock.unlock();
|
||||
LOG_VERBOSE("callback_new_task", {});
|
||||
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
|
||||
callback_new_task(task);
|
||||
}
|
||||
LOG_VERBOSE("callback_all_task_finished", {});
|
||||
// process and update all the multitasks
|
||||
LOG_VERBOSE("update_multitasks", {});
|
||||
// check if we have any finished multitasks
|
||||
auto queue_iterator = queue_multitasks.begin();
|
||||
while (queue_iterator != queue_multitasks.end())
|
||||
{
|
||||
@ -326,8 +310,9 @@ struct llama_server_queue {
|
||||
++queue_iterator;
|
||||
}
|
||||
}
|
||||
// all tasks in the current loop is finished
|
||||
callback_all_task_finished();
|
||||
// all tasks in the current loop is processed, slots data is now ready
|
||||
LOG_VERBOSE("callback_run_slots", {});
|
||||
callback_run_slots();
|
||||
}
|
||||
LOG_VERBOSE("wait for new task", {});
|
||||
// wait for new task
|
||||
@ -385,12 +370,16 @@ struct llama_server_response {
|
||||
std::mutex mutex_results;
|
||||
std::condition_variable condition_results;
|
||||
|
||||
// add the task_id to the list of tasks waiting for response
|
||||
void add_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(task_id);
|
||||
}
|
||||
|
||||
// when the request is finished, we can remove task associated with it
|
||||
void remove_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(task_id);
|
||||
}
|
||||
@ -403,7 +392,6 @@ struct llama_server_response {
|
||||
condition_results.wait(lock, [&]{
|
||||
return !queue_results.empty();
|
||||
});
|
||||
LOG_VERBOSE("condition_results unblock", {});
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++)
|
||||
{
|
||||
@ -428,22 +416,22 @@ struct llama_server_response {
|
||||
// Send a new result to a waiting task_id
|
||||
void send(task_result result) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
LOG_VERBOSE("send new result", {});
|
||||
LOG_VERBOSE("send new result", {{"task_id", result.id}});
|
||||
for (auto& task_id : waiting_task_ids) {
|
||||
// LOG_TEE("waiting task id %i \n", task_id);
|
||||
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
||||
if (result.multitask_id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("callback_update_multitask", {});
|
||||
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
|
||||
callback_update_multitask(task_id, result.id, result);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result.id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("queue_results.push_back", {});
|
||||
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
|
||||
queue_results.push_back(result);
|
||||
condition_results.notify_one();
|
||||
condition_results.notify_all();
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -550,3 +538,96 @@ static std::string gen_chatcmplid()
|
||||
chatcmplid << "chatcmpl-" << random_string();
|
||||
return chatcmplid.str();
|
||||
}
|
||||
|
||||
//
|
||||
// other common utils
|
||||
//
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
||||
{
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
static bool ends_with(const std::string &str, const std::string &suffix)
|
||||
{
|
||||
return str.size() >= suffix.size() &&
|
||||
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
|
||||
static size_t find_partial_stop_string(const std::string &stop,
|
||||
const std::string &text)
|
||||
{
|
||||
if (!text.empty() && !stop.empty())
|
||||
{
|
||||
const char text_last_char = text.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
||||
{
|
||||
if (stop[char_index] == text_last_char)
|
||||
{
|
||||
const std::string current_partial = stop.substr(0, char_index + 1);
|
||||
if (ends_with(text, current_partial))
|
||||
{
|
||||
return text.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
// TODO: reuse llama_detokenize
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
||||
{
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin)
|
||||
{
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
||||
{
|
||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||
// (size > 1 meaning it's already a known token)
|
||||
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << std::hex << (out[0] & 0xff);
|
||||
std::string res(ss.str());
|
||||
out = "byte: \\x" + res;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
||||
{
|
||||
json out = json::array();
|
||||
for (const auto &prob : probs)
|
||||
{
|
||||
json probs_for_token = json::array();
|
||||
for (const auto &p : prob.probs)
|
||||
{
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
||||
probs_for_token.push_back(json
|
||||
{
|
||||
{"tok_str", tok_str},
|
||||
{"prob", p.prob},
|
||||
});
|
||||
}
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
||||
out.push_back(json{
|
||||
{"content", tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
int main() {
|
||||
ggml_backend_sycl_print_sycl_devices();
|
||||
return 0;
|
||||
}
|
||||
|
@ -8,12 +8,19 @@ INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
export GGML_SYCL_DEVICE=$1
|
||||
GGML_SYCL_DEVICE=$1
|
||||
else
|
||||
export GGML_SYCL_DEVICE=0
|
||||
GGML_SYCL_DEVICE=0
|
||||
fi
|
||||
echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
#./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 5 -e -ngl 33 -t 1 -s 0
|
||||
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
#use all GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
|
||||
#use main GPU only
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
|
@ -960,7 +960,7 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_opt_context * opt = train->opt;
|
||||
|
||||
// set opt params from command line
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
opt->params.print_forward_graph = false;
|
||||
opt->params.print_backward_graph = false;
|
||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
|
18
flake.lock
generated
18
flake.lock
generated
@ -5,11 +5,11 @@
|
||||
"nixpkgs-lib": "nixpkgs-lib"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1706830856,
|
||||
"narHash": "sha256-a0NYyp+h9hlb7ddVz4LUn1vT/PLwqfrWYcHMvFB1xYg=",
|
||||
"lastModified": 1709336216,
|
||||
"narHash": "sha256-Dt/wOWeW6Sqm11Yh+2+t0dfEWxoMxGBvv3JpIocFl9E=",
|
||||
"owner": "hercules-ci",
|
||||
"repo": "flake-parts",
|
||||
"rev": "b253292d9c0a5ead9bc98c4e9a26c6312e27d69f",
|
||||
"rev": "f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1708118438,
|
||||
"narHash": "sha256-kk9/0nuVgA220FcqH/D2xaN6uGyHp/zoxPNUmPCMmEE=",
|
||||
"lastModified": 1709237383,
|
||||
"narHash": "sha256-cy6ArO4k5qTx+l5o+0mL9f5fa86tYUX3ozE1S+Txlds=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "5863c27340ba4de8f83e7e3c023b9599c3cb3c80",
|
||||
"rev": "1536926ef5621b09bba54035ae2bb6d806d72ac8",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -37,11 +37,11 @@
|
||||
"nixpkgs-lib": {
|
||||
"locked": {
|
||||
"dir": "lib",
|
||||
"lastModified": 1706550542,
|
||||
"narHash": "sha256-UcsnCG6wx++23yeER4Hg18CXWbgNpqNXcHIo5/1Y+hc=",
|
||||
"lastModified": 1709237383,
|
||||
"narHash": "sha256-cy6ArO4k5qTx+l5o+0mL9f5fa86tYUX3ozE1S+Txlds=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "97b17f32362e475016f942bbdfda4a4a72a8a652",
|
||||
"rev": "1536926ef5621b09bba54035ae2bb6d806d72ac8",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
12
flake.nix
12
flake.nix
@ -107,11 +107,12 @@
|
||||
# ```
|
||||
#
|
||||
# Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format
|
||||
flake.overlays.default =
|
||||
(final: prev: {
|
||||
flake.overlays.default = (
|
||||
final: prev: {
|
||||
llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
|
||||
inherit (final.llamaPackages) llama-cpp;
|
||||
});
|
||||
}
|
||||
);
|
||||
|
||||
systems = [
|
||||
"aarch64-darwin"
|
||||
@ -131,6 +132,9 @@
|
||||
...
|
||||
}:
|
||||
{
|
||||
# For standardised reproducible formatting with `nix fmt`
|
||||
formatter = pkgs.nixfmt-rfc-style;
|
||||
|
||||
# Unlike `.#packages`, legacyPackages may contain values of
|
||||
# arbitrary types (including nested attrsets) and may even throw
|
||||
# exceptions. This attribute isn't recursed into by `nix flake
|
||||
@ -150,6 +154,7 @@
|
||||
packages =
|
||||
{
|
||||
default = config.legacyPackages.llamaPackages.llama-cpp;
|
||||
vulkan = config.packages.default.override { useVulkan = true; };
|
||||
}
|
||||
// lib.optionalAttrs pkgs.stdenv.isLinux {
|
||||
opencl = config.packages.default.override { useOpenCL = true; };
|
||||
@ -157,7 +162,6 @@
|
||||
|
||||
mpi-cpu = config.packages.default.override { useMpi = true; };
|
||||
mpi-cuda = config.packages.default.override { useMpi = true; };
|
||||
vulkan = config.packages.default.override { useVulkan = true; };
|
||||
}
|
||||
// lib.optionalAttrs (system == "x86_64-linux") {
|
||||
rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp;
|
||||
|
116
ggml-alloc.c
116
ggml-alloc.c
@ -377,6 +377,9 @@ struct ggml_gallocr {
|
||||
|
||||
struct node_alloc * node_allocs; // [n_nodes]
|
||||
int n_nodes;
|
||||
|
||||
struct tensor_alloc * leaf_allocs; // [n_leafs]
|
||||
int n_leafs;
|
||||
};
|
||||
|
||||
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
|
||||
@ -427,6 +430,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
free(galloc->buffers);
|
||||
free(galloc->buf_tallocs);
|
||||
free(galloc->node_allocs);
|
||||
free(galloc->leaf_allocs);
|
||||
free(galloc);
|
||||
}
|
||||
|
||||
@ -464,7 +468,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * parent = node->src[i];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
continue;
|
||||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
@ -544,22 +548,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
|
||||
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
|
||||
|
||||
// allocate all graph inputs first to avoid overwriting them
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
if (graph->nodes[i]->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (graph->nodes[i]->src[j] == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// count number of children and views
|
||||
// allocate all graph inputs and leafs first to avoid overwriting them
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
@ -568,14 +558,37 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_gallocr_hash_get(galloc, parent)->n_children += 1;
|
||||
if (node->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
||||
|
||||
// allocate explicit inputs and leafs
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
|
||||
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate the remaining leafs that are unused on the graph
|
||||
// these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
|
||||
if (hn->n_children == 0) {
|
||||
assert(!hn->allocated);
|
||||
// since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
|
||||
ggml_gallocr_allocate_node(galloc, leaf, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
@ -586,7 +599,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
continue;
|
||||
}
|
||||
ggml_gallocr_allocate_node(galloc, parent, buffer_id);
|
||||
}
|
||||
@ -598,7 +611,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
continue;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
@ -611,7 +624,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
continue;
|
||||
}
|
||||
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
|
||||
p_hn->n_children -= 1;
|
||||
@ -696,6 +709,18 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
}
|
||||
}
|
||||
if (galloc->n_leafs < graph->n_leafs) {
|
||||
free(galloc->leaf_allocs);
|
||||
galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
|
||||
GGML_ASSERT(galloc->leaf_allocs != NULL);
|
||||
}
|
||||
galloc->n_leafs = graph->n_leafs;
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
galloc->leaf_allocs[i].offset = hn->offset;
|
||||
galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
}
|
||||
|
||||
// reallocate buffers if needed
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
@ -722,8 +747,8 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
||||
return ggml_gallocr_reserve_n(galloc, graph, NULL);
|
||||
}
|
||||
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * node_alloc, struct tensor_alloc * tensor_alloc) {
|
||||
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max);
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
|
||||
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
|
||||
|
||||
if (node->view_src != NULL) {
|
||||
if (node->buffer == NULL) {
|
||||
@ -732,29 +757,20 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
||||
// this tensor was allocated without ggml-backend
|
||||
return;
|
||||
}
|
||||
ggml_backend_view_init(galloc->buffers[node_alloc->buffer_id], node);
|
||||
ggml_backend_view_init(galloc->buffers[buffer_id], node);
|
||||
}
|
||||
} else {
|
||||
if (node->data == NULL) {
|
||||
assert(tensor_alloc->offset != SIZE_MAX);
|
||||
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max);
|
||||
void * base = ggml_backend_buffer_get_base(galloc->buffers[node_alloc->buffer_id]);
|
||||
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
|
||||
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
|
||||
void * addr = (char *)base + tensor_alloc->offset;
|
||||
ggml_backend_tensor_alloc(galloc->buffers[node_alloc->buffer_id], node, addr);
|
||||
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
|
||||
} else {
|
||||
if (node->buffer == NULL) {
|
||||
// this tensor was allocated without ggml-backend
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
size_t offset =
|
||||
(char *)node->data -
|
||||
(char *)ggml_backend_buffer_get_base(node->buffer);
|
||||
size_t size = ggml_backend_buffer_get_alloc_size(node->buffer, node);
|
||||
assert(tensor_alloc->offset == SIZE_MAX || offset == tensor_alloc->offset);
|
||||
assert(tensor_alloc->offset == SIZE_MAX || size <= tensor_alloc->size_max);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -773,6 +789,13 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
|
||||
return true;
|
||||
}
|
||||
|
||||
if (galloc->n_leafs != graph->n_leafs) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
@ -827,6 +850,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
}
|
||||
|
||||
// allocate the graph tensors from the previous assignments
|
||||
// nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
@ -835,9 +859,15 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]);
|
||||
ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, node, node_alloc, &node_alloc->dst);
|
||||
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
|
||||
}
|
||||
// leafs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
|
||||
ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -104,6 +104,8 @@ extern "C" {
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
ggml_guid_t guid;
|
||||
|
||||
struct ggml_backend_i iface;
|
||||
|
||||
ggml_backend_context_t context;
|
||||
|
@ -12,7 +12,6 @@
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
|
||||
// backend buffer type
|
||||
|
||||
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
|
||||
@ -159,6 +158,13 @@ bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml
|
||||
|
||||
// backend
|
||||
|
||||
ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
return backend->guid;
|
||||
}
|
||||
|
||||
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return "NULL";
|
||||
@ -781,6 +787,11 @@ static struct ggml_backend_i cpu_backend_i = {
|
||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
||||
if (ctx == NULL) {
|
||||
@ -800,6 +811,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
}
|
||||
|
||||
*cpu_backend = (struct ggml_backend) {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .interface = */ cpu_backend_i,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
@ -807,7 +819,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_cpu_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
|
@ -49,7 +49,7 @@ extern "C" {
|
||||
// Backend
|
||||
//
|
||||
|
||||
|
||||
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
|
||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||
|
||||
|
1016
ggml-cuda.cu
1016
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
27
ggml-impl.h
27
ggml-impl.h
@ -53,11 +53,23 @@ extern "C" {
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ((float) (x))
|
||||
#define GGML_FP32_TO_FP16(x) (x)
|
||||
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
__fp16 tmp;
|
||||
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||
return (float)tmp;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
__fp16 tmp = f;
|
||||
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
@ -214,8 +226,7 @@ extern float ggml_table_f32_f16[1 << 16];
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
|
||||
|
||||
#if !defined(GGML_FP16_TO_FP32)
|
||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
uint16_t s;
|
||||
memcpy(&s, &f, sizeof(uint16_t));
|
||||
@ -223,8 +234,10 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
}
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_FP32_TO_FP16)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
||||
|
@ -1953,11 +1953,17 @@ static struct ggml_backend_i kompute_backend_i = {
|
||||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_kompute_guid() {
|
||||
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_kompute_init(int device) {
|
||||
GGML_ASSERT(s_kompute_context == nullptr);
|
||||
s_kompute_context = new ggml_kompute_context(device);
|
||||
|
||||
ggml_backend_t kompute_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_kompute_guid(),
|
||||
/* .interface = */ kompute_backend_i,
|
||||
/* .context = */ s_kompute_context,
|
||||
};
|
||||
@ -1966,7 +1972,7 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
|
||||
}
|
||||
|
||||
bool ggml_backend_is_kompute(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_kompute_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
|
||||
|
151
ggml-metal.m
151
ggml-metal.m
@ -61,7 +61,11 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
@ -84,7 +88,11 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
@ -103,7 +111,11 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
||||
@ -119,7 +131,11 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
@ -135,7 +151,11 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
@ -283,6 +303,14 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
return NULL;
|
||||
}
|
||||
} else {
|
||||
#if GGML_METAL_EMBED_LIBRARY
|
||||
GGML_METAL_LOG_INFO("%s: using embedded metal library\n", __func__);
|
||||
|
||||
extern const char ggml_metallib_start[];
|
||||
extern const char ggml_metallib_end[];
|
||||
|
||||
NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
|
||||
#else
|
||||
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
|
||||
|
||||
NSString * sourcePath;
|
||||
@ -305,6 +333,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
@autoreleasepool {
|
||||
// dictionary of preprocessor macros
|
||||
@ -447,7 +476,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
@ -470,7 +503,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
@ -489,7 +526,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@ -505,7 +546,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@ -521,7 +566,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
@ -1346,7 +1395,11 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
|
||||
@ -1481,12 +1534,36 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
@ -1519,9 +1596,9 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S) { // || src0t == GGML_TYPE_Q4_K) {
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
||||
@ -1529,11 +1606,16 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
|
||||
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -1627,7 +1709,11 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
@ -1765,12 +1851,36 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
@ -1819,9 +1929,9 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
|
||||
}
|
||||
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
||||
src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S) { // || src2t == GGML_TYPE_Q4_K) {
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
||||
src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
|
||||
@ -1829,11 +1939,16 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
else if (src2t == GGML_TYPE_IQ3_XXS || src2t == GGML_TYPE_IQ3_S) {
|
||||
const int mem_size = src2t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ4_NL || src2t == GGML_TYPE_IQ4_XS) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -1875,7 +1990,11 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
@ -2211,8 +2330,8 @@ static bool ggml_metal_graph_compute(
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (order) {
|
||||
case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
||||
case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
||||
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
||||
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
||||
default: GGML_ASSERT(false);
|
||||
};
|
||||
|
||||
@ -2776,6 +2895,11 @@ void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void *
|
||||
ggml_metal_log_user_data = user_data;
|
||||
}
|
||||
|
||||
static ggml_guid_t ggml_backend_metal_guid(void) {
|
||||
static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_metal_init(void) {
|
||||
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
||||
|
||||
@ -2786,6 +2910,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
||||
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
||||
|
||||
*metal_backend = (struct ggml_backend) {
|
||||
/* .guid = */ ggml_backend_metal_guid(),
|
||||
/* .interface = */ ggml_backend_metal_i,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
@ -2794,7 +2919,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
||||
}
|
||||
|
||||
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_metal_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
||||
|
1284
ggml-metal.metal
1284
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
@ -1354,7 +1354,7 @@ static void ggml_cl_pool_free(cl_mem mem, size_t size) {
|
||||
}
|
||||
|
||||
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
||||
if (tensor->backend != GGML_BACKEND_GPU) {
|
||||
if (tensor->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1412,7 +1412,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
@ -1476,7 +1476,7 @@ void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src
|
||||
}
|
||||
|
||||
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
@ -1566,13 +1566,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
size_t y_size;
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
}
|
||||
cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
|
||||
size_t x_offset = 0;
|
||||
|
||||
@ -1580,7 +1580,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
// TODO: copy src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
if (src0->backend == GGML_BACKEND_GPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||
} else {
|
||||
// copy src0 to device
|
||||
@ -1589,7 +1589,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
// copy src1 to device
|
||||
if (src1->backend == GGML_BACKEND_CPU) {
|
||||
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||
}
|
||||
|
||||
@ -1612,7 +1612,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
}
|
||||
|
||||
// copy dst to host
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
}
|
||||
@ -1621,13 +1621,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
}
|
||||
}
|
||||
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_X, x_size);
|
||||
}
|
||||
if (src1->backend != GGML_BACKEND_GPU) {
|
||||
if (src1->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
}
|
||||
if (dst->backend != GGML_BACKEND_GPU) {
|
||||
if (dst->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
}
|
||||
}
|
||||
@ -1670,7 +1670,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
size_t y_size;
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
@ -1687,7 +1687,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
// TODO: copy src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
if (src0->backend == GGML_BACKEND_GPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||
} else {
|
||||
// copy src0 to device
|
||||
@ -1741,7 +1741,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
}
|
||||
|
||||
// copy dst to host, then convert to float
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||
@ -1753,7 +1753,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
}
|
||||
}
|
||||
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_X, x_size);
|
||||
}
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
@ -1798,7 +1798,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
cl_mem d_Q;
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
||||
}
|
||||
|
||||
@ -1817,10 +1817,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy src0 to device if necessary
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
@ -1829,7 +1829,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
if (!mul_mat_vec) {
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne / global_denom;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||
@ -1843,7 +1843,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
|
||||
// compute
|
||||
const size_t global = ne01 * local;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
@ -1895,7 +1895,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
}
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
ggml_cl_pool_free(d_Q, q_size);
|
||||
}
|
||||
}
|
||||
@ -1911,7 +1911,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
|
||||
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1993,7 +1993,7 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
tensor->extra = dst;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
}
|
||||
|
||||
// ggml-backend
|
||||
@ -2045,7 +2045,7 @@ static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
ctx->sub_buffers.push_back(sub_buffer);
|
||||
tensor->extra = sub_buffer;
|
||||
}
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
|
2182
ggml-quants.c
2182
ggml-quants.c
File diff suppressed because it is too large
Load Diff
@ -182,6 +182,15 @@ typedef struct {
|
||||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
// 2.5625 bpw quants
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK_K/4];
|
||||
uint8_t qh[QK_K/32];
|
||||
uint8_t scales[QK_K/32];
|
||||
} block_iq2_s;
|
||||
static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding");
|
||||
|
||||
// (Almost) "true" 3-bit quantization.
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 3.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
@ -191,6 +200,21 @@ typedef struct {
|
||||
} block_iq3_xxs;
|
||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
// 3.4375 bpw
|
||||
#if QK_K == 64
|
||||
#define IQ3S_N_SCALE 2
|
||||
#else
|
||||
#define IQ3S_N_SCALE QK_K/64
|
||||
#endif
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK_K/4];
|
||||
uint8_t qh[QK_K/32];
|
||||
uint8_t signs[QK_K/8];
|
||||
uint8_t scales[IQ3S_N_SCALE];
|
||||
} block_iq3_s;
|
||||
static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
|
||||
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK_K/8];
|
||||
@ -198,6 +222,27 @@ typedef struct {
|
||||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
// Non-linear quants
|
||||
#define QK4_NL 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK4_NL/2];
|
||||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#if QK_K == 64
|
||||
#define block_iq4_xs block_iq4_nl
|
||||
//typedef struct block_iq4_nl block_iq4_xs;
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint16_t scales_h;
|
||||
uint8_t scales_l[QK_K/64];
|
||||
uint8_t qs[QK_K/2];
|
||||
} block_iq4_xs;
|
||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -217,6 +262,10 @@ void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGM
|
||||
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
@ -232,6 +281,10 @@ void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
@ -249,8 +302,12 @@ void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRI
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
@ -266,16 +323,24 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
//
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
//
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
|
2956
ggml-sycl.cpp
2956
ggml-sycl.cpp
File diff suppressed because it is too large
Load Diff
@ -24,6 +24,11 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
251
ggml-vulkan.cpp
251
ggml-vulkan.cpp
@ -1091,7 +1091,10 @@ static void ggml_vk_print_gpu_info(size_t idx) {
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_instance_init() {
|
||||
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
|
||||
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
|
||||
|
||||
void ggml_vk_instance_init() {
|
||||
if (vk_instance_initialized) {
|
||||
return;
|
||||
}
|
||||
@ -1100,28 +1103,48 @@ static void ggml_vk_instance_init() {
|
||||
#endif
|
||||
|
||||
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
|
||||
const std::vector<const char*> layers = {
|
||||
#ifdef GGML_VULKAN_VALIDATE
|
||||
"VK_LAYER_KHRONOS_validation",
|
||||
#endif
|
||||
};
|
||||
const std::vector<const char*> extensions = {
|
||||
#ifdef GGML_VULKAN_VALIDATE
|
||||
"VK_EXT_validation_features",
|
||||
#endif
|
||||
};
|
||||
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions);
|
||||
#ifdef GGML_VULKAN_VALIDATE
|
||||
const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
|
||||
vk::ValidationFeaturesEXT validation_features = {
|
||||
features_enable,
|
||||
{},
|
||||
};
|
||||
validation_features.setPNext(nullptr);
|
||||
instance_create_info.setPNext(&validation_features);
|
||||
|
||||
std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
|
||||
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
|
||||
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
|
||||
#ifdef __APPLE__
|
||||
const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
|
||||
#endif
|
||||
|
||||
std::vector<const char*> layers;
|
||||
|
||||
if (validation_ext) {
|
||||
layers.push_back("VK_LAYER_KHRONOS_validation");
|
||||
}
|
||||
std::vector<const char*> extensions;
|
||||
if (validation_ext) {
|
||||
extensions.push_back("VK_EXT_validation_features");
|
||||
}
|
||||
#ifdef __APPLE__
|
||||
if (portability_enumeration_ext) {
|
||||
extensions.push_back("VK_KHR_portability_enumeration");
|
||||
}
|
||||
#endif
|
||||
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
|
||||
#ifdef __APPLE__
|
||||
if (portability_enumeration_ext) {
|
||||
instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
|
||||
}
|
||||
#endif
|
||||
|
||||
std::vector<vk::ValidationFeatureEnableEXT> features_enable;
|
||||
vk::ValidationFeaturesEXT validation_features;
|
||||
|
||||
if (validation_ext) {
|
||||
features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
|
||||
validation_features = {
|
||||
features_enable,
|
||||
{},
|
||||
};
|
||||
validation_features.setPNext(nullptr);
|
||||
instance_create_info.setPNext(&validation_features);
|
||||
|
||||
std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
|
||||
}
|
||||
vk_instance.instance = vk::createInstance(instance_create_info);
|
||||
|
||||
memset(vk_instance.initialized, 0, sizeof(bool) * GGML_VK_MAX_DEVICES);
|
||||
@ -1168,12 +1191,12 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
|
||||
vk_instance.devices[idx] = std::make_shared<vk_device>();
|
||||
ctx->device = vk_instance.devices[idx];
|
||||
ctx->device.lock()->physical_device = devices[dev_num];
|
||||
std::vector<vk::ExtensionProperties> ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties();
|
||||
const std::vector<vk::ExtensionProperties> ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties();
|
||||
|
||||
bool maintenance4_support = false;
|
||||
|
||||
// Check if maintenance4 is supported
|
||||
for (auto properties : ext_props) {
|
||||
for (const auto& properties : ext_props) {
|
||||
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
||||
maintenance4_support = true;
|
||||
}
|
||||
@ -1204,7 +1227,7 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
|
||||
bool fp16_storage = false;
|
||||
bool fp16_compute = false;
|
||||
|
||||
for (auto properties : ext_props) {
|
||||
for (const auto& properties : ext_props) {
|
||||
if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
|
||||
fp16_storage = true;
|
||||
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
|
||||
@ -2303,8 +2326,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
@ -2436,7 +2459,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
||||
// compute
|
||||
ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data);
|
||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
|
||||
@ -2489,8 +2512,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
@ -2613,7 +2636,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
@ -2630,7 +2653,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
@ -2662,7 +2685,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const uint64_t x_ne = ne00 * ne01 * ne02;
|
||||
const uint64_t y_ne = ne10 * ne11 * ne12;
|
||||
@ -2704,7 +2727,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) dst->data;
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
@ -2721,7 +2744,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
@ -2754,7 +2777,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const uint64_t d_ne = ne01 * ne11 * ne12;
|
||||
|
||||
@ -2797,7 +2820,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) dst->data;
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
@ -2815,7 +2838,7 @@ static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
}
|
||||
|
||||
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
@ -2863,8 +2886,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
||||
// TODO: support for transposed / permuted tensors
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
@ -3093,8 +3116,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
}
|
||||
}
|
||||
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
|
||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||
@ -3103,7 +3126,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
|
||||
// Workaround for tiny tensor inputs on ROPE
|
||||
if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) {
|
||||
if (use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU && y_sz > d_D->size) {
|
||||
y_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
|
||||
@ -3192,9 +3215,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
}
|
||||
if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU && op == GGML_OP_CPY) {
|
||||
ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
|
||||
} else if(dst->backend == GGML_BACKEND_CPU) {
|
||||
} else if(dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) dst->data;
|
||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
|
||||
@ -3236,7 +3259,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
}
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
|
||||
}
|
||||
@ -3342,7 +3365,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
|
||||
|
||||
static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
// If backend is CPU, data from src0 has to be copied off the device
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
vk_buffer d_D = extra_src0->buffer_gpu.lock();
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
@ -3977,9 +4000,9 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm
|
||||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
|
||||
#endif
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_TYPE_GPU));
|
||||
|
||||
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
|
||||
return;
|
||||
@ -4198,9 +4221,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
||||
}
|
||||
|
||||
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
|
||||
return;
|
||||
@ -4354,7 +4377,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
last_node = true;
|
||||
#endif
|
||||
|
||||
if (node->backend == GGML_BACKEND_CPU || last_node) {
|
||||
if (node->backend == GGML_BACKEND_TYPE_CPU || last_node) {
|
||||
ggml_vk_ctx_end(ctx->compute_ctx);
|
||||
ctx->compute_ctx->exit_tensor = node;
|
||||
ctx->compute_ctx = nullptr;
|
||||
@ -4362,9 +4385,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
|
||||
return false;
|
||||
@ -4425,7 +4448,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
if (params->ith != 0) {
|
||||
return true;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -4728,7 +4751,7 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
|
||||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
tensor->extra = extra;
|
||||
}
|
||||
|
||||
@ -4736,7 +4759,7 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu
|
||||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
@ -4751,7 +4774,7 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu
|
||||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
@ -4982,7 +5005,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
||||
#endif
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
@ -5003,7 +5026,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
||||
#endif
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
@ -5080,7 +5103,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
||||
int last_node = cgraph->n_nodes - 1;
|
||||
|
||||
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
||||
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) {
|
||||
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
last_node -= 1;
|
||||
}
|
||||
|
||||
@ -5089,7 +5112,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
||||
}
|
||||
|
||||
ggml_compute_params params = {};
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
params.ith = 0;
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
@ -5227,6 +5250,11 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
||||
/* .supports_op = */ ggml_backend_vk_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_vk_guid() {
|
||||
static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
|
||||
if (vk_instance.initialized[idx]) {
|
||||
return vk_instance.backends[idx];
|
||||
@ -5245,6 +5273,7 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
|
||||
vk_instance.initialized[idx] = true;
|
||||
|
||||
ggml_backend_t vk_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_vk_guid(),
|
||||
/* .interface = */ ggml_backend_vk_interface,
|
||||
/* .context = */ &vk_instance.contexts[ctx->idx],
|
||||
};
|
||||
@ -5255,7 +5284,7 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_vk_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int ggml_backend_vk_get_device_count() {
|
||||
@ -5301,6 +5330,42 @@ GGML_CALL int ggml_backend_vk_reg_devices() {
|
||||
return vk_instance.device_indices.size();
|
||||
}
|
||||
|
||||
// Extension availability
|
||||
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
|
||||
#ifdef GGML_VULKAN_VALIDATE
|
||||
bool portability_enumeration_ext = false;
|
||||
// Check for portability enumeration extension for MoltenVK support
|
||||
for (const auto& properties : instance_extensions) {
|
||||
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if (!portability_enumeration_ext) {
|
||||
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
|
||||
UNUSED(instance_extensions);
|
||||
}
|
||||
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
|
||||
#ifdef __APPLE__
|
||||
bool portability_enumeration_ext = false;
|
||||
// Check for portability enumeration extension for MoltenVK support
|
||||
for (const auto& properties : instance_extensions) {
|
||||
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if (!portability_enumeration_ext) {
|
||||
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
|
||||
UNUSED(instance_extensions);
|
||||
}
|
||||
|
||||
// checks
|
||||
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
@ -5357,13 +5422,14 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
|
||||
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
|
||||
void * tensor_data = tensor->data;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
const size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||
@ -5383,14 +5449,14 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
||||
std::vector<const ggml_tensor *> done;
|
||||
ggml_vk_print_graph_origin(tensor, done);
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
free(tensor_data);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||
return;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
return;
|
||||
}
|
||||
@ -5428,7 +5494,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -5465,17 +5531,18 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
|
||||
src0_buffer = malloc(src0_size);
|
||||
src0_clone->data = src0_buffer;
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
memcpy(src0_clone->data, src0->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
||||
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
||||
const int idx = i3*src0->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -5485,10 +5552,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
|
||||
}
|
||||
} else {
|
||||
if (offset + src0_size >= extra->buffer_gpu->size) {
|
||||
src0_size = extra->buffer_gpu->size - offset;
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
if (offset + src0_size >= buffer_gpu->size) {
|
||||
src0_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -5508,17 +5576,18 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
|
||||
src1_buffer = malloc(src1_size);
|
||||
src1_clone->data = src1_buffer;
|
||||
if (src1->backend == GGML_BACKEND_CPU) {
|
||||
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
memcpy(src1_clone->data, src1->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src1->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
||||
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
||||
const int idx = i3*src1->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -5528,10 +5597,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
|
||||
}
|
||||
} else {
|
||||
if (offset + src1_size >= extra->buffer_gpu->size) {
|
||||
src1_size = extra->buffer_gpu->size - offset;
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
if (offset + src1_size >= buffer_gpu->size) {
|
||||
src1_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -5578,11 +5648,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
} else if (tensor->op == GGML_OP_RMS_NORM) {
|
||||
tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
||||
} else if (tensor->op == GGML_OP_SOFT_MAX) {
|
||||
if (src1 != nullptr) {
|
||||
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, *(float *)tensor->op_params);
|
||||
} else {
|
||||
tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
|
||||
}
|
||||
} else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
|
||||
tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
||||
} else if (tensor->op == GGML_OP_ROPE) {
|
||||
@ -5670,7 +5736,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
return;
|
||||
}
|
||||
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
|
||||
@ -5682,17 +5748,18 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
|
||||
void * tensor_data = tensor->data;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
if (extra->offset + tensor_size >= extra->buffer_gpu->size) {
|
||||
tensor_size = extra->buffer_gpu->size - (extra->offset);
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
if (extra->offset + tensor_size >= buffer_gpu->size) {
|
||||
tensor_size = buffer_gpu->size - (extra->offset);
|
||||
}
|
||||
|
||||
ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
float first_error_result = -1.0f;
|
||||
@ -5815,7 +5882,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
||||
comp_result = nullptr;
|
||||
comp_size = 0;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
free(tensor_data);
|
||||
}
|
||||
}
|
||||
|
62
ggml.h
62
ggml.h
@ -315,13 +315,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__CUDACC__)
|
||||
typedef half ggml_fp16_t;
|
||||
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
typedef __fp16 ggml_fp16_t;
|
||||
#else
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
#endif
|
||||
|
||||
// convert FP16 <-> FP32
|
||||
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
@ -355,6 +349,10 @@ extern "C" {
|
||||
GGML_TYPE_IQ2_XS = 17,
|
||||
GGML_TYPE_IQ3_XXS = 18,
|
||||
GGML_TYPE_IQ1_S = 19,
|
||||
GGML_TYPE_IQ4_NL = 20,
|
||||
GGML_TYPE_IQ3_S = 21,
|
||||
GGML_TYPE_IQ2_S = 22,
|
||||
GGML_TYPE_IQ4_XS = 23,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
@ -368,9 +366,9 @@ extern "C" {
|
||||
};
|
||||
|
||||
enum ggml_backend_type {
|
||||
GGML_BACKEND_CPU = 0,
|
||||
GGML_BACKEND_GPU = 10,
|
||||
GGML_BACKEND_GPU_SPLIT = 20,
|
||||
GGML_BACKEND_TYPE_CPU = 0,
|
||||
GGML_BACKEND_TYPE_GPU = 10,
|
||||
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
||||
};
|
||||
|
||||
// model file types
|
||||
@ -393,6 +391,10 @@ extern "C" {
|
||||
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
@ -501,9 +503,9 @@ extern "C" {
|
||||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
GGML_OBJECT_TENSOR,
|
||||
GGML_OBJECT_GRAPH,
|
||||
GGML_OBJECT_WORK_BUFFER
|
||||
GGML_OBJECT_TYPE_TENSOR,
|
||||
GGML_OBJECT_TYPE_GRAPH,
|
||||
GGML_OBJECT_TYPE_WORK_BUFFER
|
||||
};
|
||||
|
||||
enum ggml_log_level {
|
||||
@ -645,9 +647,9 @@ extern "C" {
|
||||
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
||||
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
||||
enum ggml_task_type {
|
||||
GGML_TASK_INIT = 0,
|
||||
GGML_TASK_COMPUTE,
|
||||
GGML_TASK_FINALIZE,
|
||||
GGML_TASK_TYPE_INIT = 0,
|
||||
GGML_TASK_TYPE_COMPUTE,
|
||||
GGML_TASK_TYPE_FINALIZE,
|
||||
};
|
||||
|
||||
struct ggml_compute_params {
|
||||
@ -671,6 +673,16 @@ extern "C" {
|
||||
GGML_NUMA_STRATEGY_COUNT
|
||||
};
|
||||
|
||||
//
|
||||
// GUID
|
||||
//
|
||||
|
||||
// GUID types
|
||||
typedef uint8_t ggml_guid[16];
|
||||
typedef ggml_guid * ggml_guid_t;
|
||||
|
||||
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
|
||||
|
||||
// misc
|
||||
|
||||
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
||||
@ -1652,8 +1664,8 @@ extern "C" {
|
||||
|
||||
// sort rows
|
||||
enum ggml_sort_order {
|
||||
GGML_SORT_ASC,
|
||||
GGML_SORT_DESC,
|
||||
GGML_SORT_ORDER_ASC,
|
||||
GGML_SORT_ORDER_DESC,
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_argsort(
|
||||
@ -1965,8 +1977,8 @@ extern "C" {
|
||||
|
||||
// optimization methods
|
||||
enum ggml_opt_type {
|
||||
GGML_OPT_ADAM,
|
||||
GGML_OPT_LBFGS,
|
||||
GGML_OPT_TYPE_ADAM,
|
||||
GGML_OPT_TYPE_LBFGS,
|
||||
};
|
||||
|
||||
// linesearch methods
|
||||
@ -1980,12 +1992,12 @@ extern "C" {
|
||||
|
||||
// optimization return values
|
||||
enum ggml_opt_result {
|
||||
GGML_OPT_OK = 0,
|
||||
GGML_OPT_DID_NOT_CONVERGE,
|
||||
GGML_OPT_NO_CONTEXT,
|
||||
GGML_OPT_INVALID_WOLFE,
|
||||
GGML_OPT_FAIL,
|
||||
GGML_OPT_CANCEL,
|
||||
GGML_OPT_RESULT_OK = 0,
|
||||
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
||||
GGML_OPT_RESULT_NO_CONTEXT,
|
||||
GGML_OPT_RESULT_INVALID_WOLFE,
|
||||
GGML_OPT_RESULT_FAIL,
|
||||
GGML_OPT_RESULT_CANCEL,
|
||||
|
||||
GGML_LINESEARCH_FAIL = -128,
|
||||
GGML_LINESEARCH_MINIMUM_STEP,
|
||||
|
@ -111,6 +111,8 @@ class MODEL_ARCH(IntEnum):
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
MINICPM = auto()
|
||||
GEMMA = auto()
|
||||
STARCODER2 = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
@ -167,6 +169,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
MODEL_ARCH.MINICPM: "minicpm",
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
@ -511,6 +515,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.GEMMA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
],
|
||||
MODEL_ARCH.STARCODER2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
@ -539,6 +571,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.STARCODER2: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
}
|
||||
|
||||
#
|
||||
@ -568,20 +604,28 @@ class PoolingType(IntEnum):
|
||||
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
Q4_0 = 2
|
||||
Q4_1 = 3
|
||||
Q5_0 = 6
|
||||
Q5_1 = 7
|
||||
Q8_0 = 8
|
||||
Q8_1 = 9
|
||||
Q2_K = 10
|
||||
Q3_K = 11
|
||||
Q4_K = 12
|
||||
Q5_K = 13
|
||||
Q6_K = 14
|
||||
Q8_K = 15
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
Q4_0 = 2
|
||||
Q4_1 = 3
|
||||
Q5_0 = 6
|
||||
Q5_1 = 7
|
||||
Q8_0 = 8
|
||||
Q8_1 = 9
|
||||
Q2_K = 10
|
||||
Q3_K = 11
|
||||
Q4_K = 12
|
||||
Q5_K = 13
|
||||
Q6_K = 14
|
||||
Q8_K = 15
|
||||
IQ2_XXS = 16
|
||||
IQ2_XS = 17
|
||||
IQ3_XXS = 18
|
||||
IQ1_S = 19
|
||||
IQ4_NL = 20
|
||||
IQ3_S = 21
|
||||
IQ2_S = 22
|
||||
IQ4_XS = 23
|
||||
|
||||
|
||||
class GGUFEndian(IntEnum):
|
||||
@ -626,20 +670,28 @@ class GGUFValueType(IntEnum):
|
||||
QK_K = 256
|
||||
# Items here are (block size, type size)
|
||||
GGML_QUANT_SIZES = {
|
||||
GGMLQuantizationType.F32: (1, 4),
|
||||
GGMLQuantizationType.F16: (1, 2),
|
||||
GGMLQuantizationType.Q4_0: (32, 2 + 16),
|
||||
GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
|
||||
GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
|
||||
GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
|
||||
GGMLQuantizationType.Q8_0: (32, 2 + 32),
|
||||
GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
|
||||
GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
||||
GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
||||
GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
|
||||
GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
||||
GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
||||
GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
|
||||
GGMLQuantizationType.F32: (1, 4),
|
||||
GGMLQuantizationType.F16: (1, 2),
|
||||
GGMLQuantizationType.Q4_0: (32, 2 + 16),
|
||||
GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
|
||||
GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
|
||||
GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
|
||||
GGMLQuantizationType.Q8_0: (32, 2 + 32),
|
||||
GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
|
||||
GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
||||
GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
||||
GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
|
||||
GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
||||
GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
||||
GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
|
||||
GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
|
||||
GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
|
||||
GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
|
||||
GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
|
||||
GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
|
||||
GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
|
||||
GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
|
||||
GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
|
||||
}
|
||||
|
||||
|
||||
|
@ -362,7 +362,7 @@ class GGUFWriter:
|
||||
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value)
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
def add_rope_dimension_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
|
||||
|
@ -210,6 +210,7 @@ class TensorNameMap:
|
||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
@ -256,6 +257,7 @@ class TensorNameMap:
|
||||
"model.layers.layers.{bid}.mlp.down_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w2", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
|
141
llama.h
141
llama.h
@ -64,6 +64,15 @@ extern "C" {
|
||||
LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
|
||||
};
|
||||
|
||||
// note: these values should be synchronized with ggml_rope
|
||||
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
|
||||
enum llama_rope_type {
|
||||
LLAMA_ROPE_TYPE_NONE = -1,
|
||||
LLAMA_ROPE_TYPE_NORM = 0,
|
||||
LLAMA_ROPE_TYPE_NEOX = 2,
|
||||
LLAMA_ROPE_TYPE_GLM = 4,
|
||||
};
|
||||
|
||||
enum llama_token_type {
|
||||
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||||
LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||||
@ -98,31 +107,38 @@ extern "C" {
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
||||
enum llama_rope_scaling_type {
|
||||
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
|
||||
LLAMA_ROPE_SCALING_NONE = 0,
|
||||
LLAMA_ROPE_SCALING_LINEAR = 1,
|
||||
LLAMA_ROPE_SCALING_YARN = 2,
|
||||
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
|
||||
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
|
||||
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||||
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||||
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
|
||||
};
|
||||
|
||||
enum llama_pooling_type {
|
||||
LLAMA_POOLING_NONE = 0,
|
||||
LLAMA_POOLING_MEAN = 1,
|
||||
LLAMA_POOLING_CLS = 2,
|
||||
LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
|
||||
LLAMA_POOLING_TYPE_NONE = 0,
|
||||
LLAMA_POOLING_TYPE_MEAN = 1,
|
||||
LLAMA_POOLING_TYPE_CLS = 2,
|
||||
};
|
||||
|
||||
enum llama_split_mode {
|
||||
LLAMA_SPLIT_NONE = 0, // single GPU
|
||||
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
|
||||
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
|
||||
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
|
||||
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
|
||||
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
|
||||
};
|
||||
|
||||
typedef struct llama_token_data {
|
||||
@ -170,9 +186,9 @@ extern "C" {
|
||||
} llama_batch;
|
||||
|
||||
enum llama_model_kv_override_type {
|
||||
LLAMA_KV_OVERRIDE_INT,
|
||||
LLAMA_KV_OVERRIDE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_BOOL,
|
||||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
@ -221,7 +237,10 @@ extern "C" {
|
||||
uint32_t n_batch; // prompt processing maximum batch size
|
||||
uint32_t n_threads; // number of threads to use for generation
|
||||
uint32_t n_threads_batch; // number of threads to use for batch processing
|
||||
int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||||
|
||||
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||||
// (ignored if no pooling layer)
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
@ -231,6 +250,7 @@ extern "C" {
|
||||
float yarn_beta_fast; // YaRN low correction dim
|
||||
float yarn_beta_slow; // YaRN high correction dim
|
||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||
float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval;
|
||||
void * cb_eval_user_data;
|
||||
@ -239,11 +259,15 @@ extern "C" {
|
||||
enum ggml_type type_v; // data type for V cache
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool embedding; // embedding mode only
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
|
||||
|
||||
// Abort callback
|
||||
// if it returns true, execution of llama_decode() will be aborted
|
||||
// currently works only with CPU execution
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
@ -348,15 +372,13 @@ extern "C" {
|
||||
LLAMA_API bool llama_supports_mlock (void);
|
||||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||||
|
||||
LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
|
||||
LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
|
||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
@ -406,14 +428,6 @@ extern "C" {
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
float scale,
|
||||
const char * path_base_model,
|
||||
int32_t n_threads),
|
||||
"use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
@ -511,10 +525,12 @@ extern "C" {
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_cache_update()
|
||||
// p0 < 0 : [0, p1]
|
||||
// p1 < 0 : [p0, inf)
|
||||
LLAMA_API void llama_kv_cache_seq_shift(
|
||||
LLAMA_API void llama_kv_cache_seq_add(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
@ -522,7 +538,9 @@ extern "C" {
|
||||
llama_pos delta);
|
||||
|
||||
// Integer division of the positions by factor of `d > 1`
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_cache_update()
|
||||
// p0 < 0 : [0, p1]
|
||||
// p1 < 0 : [p0, inf)
|
||||
LLAMA_API void llama_kv_cache_seq_div(
|
||||
@ -532,6 +550,20 @@ extern "C" {
|
||||
llama_pos p1,
|
||||
int d);
|
||||
|
||||
// Returns the largest position present in the KV cache for the specified sequence
|
||||
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Defragment the KV cache
|
||||
// This will be applied:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_cache_update()
|
||||
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
|
||||
|
||||
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
||||
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
||||
|
||||
//
|
||||
// State / sessions
|
||||
//
|
||||
@ -551,7 +583,7 @@ extern "C" {
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * src);
|
||||
const uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(
|
||||
@ -571,27 +603,6 @@ extern "C" {
|
||||
// Decoding
|
||||
//
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
// DEPRECATED: use llama_decode() instead
|
||||
LLAMA_API DEPRECATED(int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
int32_t n_past),
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
// DEPRECATED: use llama_decode() instead
|
||||
LLAMA_API DEPRECATED(int llama_eval_embd(
|
||||
struct llama_context * ctx,
|
||||
float * embd,
|
||||
int32_t n_tokens,
|
||||
int32_t n_past),
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Return batch for single sequence of tokens starting at pos_0
|
||||
//
|
||||
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||||
@ -630,7 +641,10 @@ extern "C" {
|
||||
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||||
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// Set abort callback
|
||||
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
// Token logits obtained from the last call to llama_decode()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Logits for which llama_batch.logits[i] == 0 are undefined
|
||||
// Rows: n_tokens provided with llama_batch
|
||||
@ -707,7 +721,7 @@ extern "C" {
|
||||
|
||||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||||
/// NOTE: This function only support some known jinja templates. It is not a jinja parser.
|
||||
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
|
||||
/// @param chat Pointer to a list of multiple llama_chat_message
|
||||
/// @param n_msg Number of llama_chat_message in this chat
|
||||
@ -765,13 +779,6 @@ extern "C" {
|
||||
float * logits_guidance,
|
||||
float scale);
|
||||
|
||||
LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_context * guidance_ctx,
|
||||
float scale),
|
||||
"use llama_sample_apply_guidance() instead");
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(
|
||||
struct llama_context * ctx,
|
||||
@ -825,12 +832,6 @@ extern "C" {
|
||||
llama_token_data_array * candidates,
|
||||
float temp);
|
||||
|
||||
LLAMA_API DEPRECATED(void llama_sample_temperature(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float temp),
|
||||
"use llama_sample_temp instead");
|
||||
|
||||
/// @details Apply constraints from grammar
|
||||
LLAMA_API void llama_sample_grammar(
|
||||
struct llama_context * ctx,
|
||||
|
@ -1,2 +1,3 @@
|
||||
-r ./requirements-convert.txt
|
||||
torch~=2.1.1
|
||||
einops~=0.7.0
|
||||
|
@ -31,7 +31,7 @@ PRETTY_NAMES = {
|
||||
"model_size": "Model Size [GiB]", "model_n_params": "Num. of Parameters",
|
||||
"n_batch": "Batch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
|
||||
"n_gpu_layers": "GPU layers", "main_gpu": "Main GPU", "no_kv_offload": "NKVO",
|
||||
"mul_mat_q": "MMQ", "tensor_split": "Tensor split"
|
||||
"tensor_split": "Tensor split"
|
||||
}
|
||||
|
||||
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
|
||||
|
213
scripts/pod-llama.sh
Normal file
213
scripts/pod-llama.sh
Normal file
@ -0,0 +1,213 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Use this script only on fresh pods (runpod.io)!
|
||||
# Otherwise, it can break your environment!
|
||||
#
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "Usage: $0 <data>"
|
||||
echo " 0: no models"
|
||||
echo " 1: tinyllama-1b"
|
||||
echo " 2: codellama-7b"
|
||||
echo " 3: codellama-13b"
|
||||
echo " 4: codellama-34b"
|
||||
echo " 5: codellama-7b-instruct"
|
||||
echo " 6: codellama-13b-instruct"
|
||||
echo " 7: codellama-34b-instruct"
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
set -x
|
||||
|
||||
# setup deps
|
||||
apt-get update
|
||||
apt-get install -y git-lfs cmake cmake-curses-gui vim ruby
|
||||
git-lfs install
|
||||
|
||||
if [ ! -d "/workspace" ]; then
|
||||
ln -sfn $(pwd) /workspace
|
||||
fi
|
||||
|
||||
# download data
|
||||
cd /workspace
|
||||
|
||||
# this is useful to git clone repos without doubling the disk size due to .git
|
||||
git clone https://github.com/iboB/git-lfs-download
|
||||
ln -sfn /workspace/git-lfs-download/git-lfs-download /usr/local/bin/git-lfs-download
|
||||
|
||||
# llama.cpp
|
||||
cd /workspace
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
|
||||
cd llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j
|
||||
|
||||
ln -sfn /workspace/TinyLlama-1.1B-Chat-v0.3 ./models/tinyllama-1b
|
||||
ln -sfn /workspace/CodeLlama-7b-hf ./models/codellama-7b
|
||||
ln -sfn /workspace/CodeLlama-13b-hf ./models/codellama-13b
|
||||
ln -sfn /workspace/CodeLlama-34b-hf ./models/codellama-34b
|
||||
ln -sfn /workspace/CodeLlama-7b-Instruct-hf ./models/codellama-7b-instruct
|
||||
ln -sfn /workspace/CodeLlama-13b-Instruct-hf ./models/codellama-13b-instruct
|
||||
ln -sfn /workspace/CodeLlama-34b-Instruct-hf ./models/codellama-34b-instruct
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
# cmake
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
mkdir build-cublas
|
||||
cd build-cublas
|
||||
|
||||
cmake -DLLAMA_CUBLAS=1 ../
|
||||
make -j
|
||||
|
||||
if [ "$1" -eq "0" ]; then
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# more models
|
||||
if [ "$1" -eq "1" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "2" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-7b-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "3" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-13b-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "4" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-34b-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "5" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-7b-Instruct-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "6" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-13b-Instruct-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "7" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-34b-Instruct-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "1" ]; then
|
||||
# perf + perplexity
|
||||
cd /workspace/llama.cpp/build-cublas
|
||||
|
||||
make -j && ../scripts/run-all-perf.sh tinyllama-1b "f16" "-ngl 99 -t 1 -p 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,32,64,128,256,512,1024,2048 -n 128"
|
||||
|
||||
../scripts/get-wikitext-2.sh
|
||||
unzip wikitext-2-raw-v1.zip
|
||||
|
||||
make -j && ./bin/perplexity -m ../models/tinyllama-1b/ggml-model-f16.gguf -f ./wikitext-2-raw/wiki.test.raw -ngl 100 --chunks 32
|
||||
|
||||
# batched
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j && ./batched ./models/tinyllama-1b/ggml-model-f16.gguf "Hello, my name is" 8 128 999
|
||||
|
||||
# batched-bench
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/tinyllama-1b/ggml-model-f16.gguf 4608 1 99 0 512 128 1,2,3,4,5,6,7,8,16,32
|
||||
|
||||
# parallel
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j && ./parallel -m ./models/tinyllama-1b/ggml-model-f16.gguf -t 1 -ngl 100 -c 4096 -b 512 -s 1 -np 8 -ns 128 -n 100 -cb
|
||||
|
||||
fi
|
||||
|
||||
# speculative
|
||||
#if [ "$1" -eq "7" ]; then
|
||||
# cd /workspace/llama.cpp
|
||||
#
|
||||
# LLAMA_CUBLAS=1 make -j && ./speculative -m ./models/codellama-34b-instruct/ggml-model-f16.gguf -md ./models/codellama-7b-instruct/ggml-model-q4_0.gguf -p "# Dijkstra's shortest path algorithm in Python (4 spaces indentation) + complexity analysis:\n\n" -e -ngl 999 -ngld 999 -t 4 -n 512 -c 4096 -s 21 --draft 16 -np 1 --temp 0.0
|
||||
#fi
|
||||
|
||||
# more benches
|
||||
#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-7b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
|
||||
#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-13b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
|
||||
|
@ -1 +1 @@
|
||||
5070f078a67c18c11736e78316ab715ca9afde16
|
||||
b458250b736a7473f7ff3560d47c93f1644f3290
|
||||
|
@ -1114,11 +1114,11 @@ struct test_soft_max : public test_case {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * mask = nullptr;
|
||||
if (this->mask) {
|
||||
mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]);
|
||||
mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, ne[0], ne[1]);
|
||||
}
|
||||
ggml_tensor * pos = nullptr;
|
||||
if (max_bias > 0.0f) {
|
||||
pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
|
||||
pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, ne[0]);
|
||||
}
|
||||
ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias);
|
||||
return out;
|
||||
@ -1274,7 +1274,7 @@ struct test_argsort : public test_case {
|
||||
|
||||
test_argsort(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
||||
ggml_sort_order order = GGML_SORT_ASC)
|
||||
ggml_sort_order order = GGML_SORT_ORDER_ASC)
|
||||
: type(type), ne(ne), order(order) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
@ -1996,8 +1996,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS,
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
@ -2195,7 +2196,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
||||
|
||||
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
|
||||
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
||||
}
|
||||
|
@ -27,12 +27,24 @@ int main(void) {
|
||||
"{%- for idx in range(0, messages|length) -%}\\n{%- if messages[idx]['role'] == 'user' -%}\\n{%- if idx > 1 -%}\\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\\n{%- else -%}\\n{{- messages[idx]['content'] + ' [/INST]' -}}\\n{%- endif -%}\\n{% elif messages[idx]['role'] == 'system' %}\\n{{- '[INST] <<SYS>>\\\\n' + messages[idx]['content'] + '\\\\n<</SYS>>\\\\n\\\\n' -}}\\n{%- elif messages[idx]['role'] == 'assistant' -%}\\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\\n{% endif %}\\n{% endfor %}",
|
||||
// bofenghuang/vigogne-2-70b-chat
|
||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<<SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\\\n' + system_message + '\\\\n<</SYS>>\\\\n\\\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\\\n' + content.strip() + '\\\\n<</SYS>>\\\\n\\\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
||||
// mlabonne/AlphaMonarch-7B
|
||||
"{% for message in messages %}{{bos_token + message['role'] + '\\n' + message['content'] + eos_token + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\\n' }}{% endif %}",
|
||||
// google/gemma-7b-it
|
||||
"{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\\n' + message['content'] | trim + '<end_of_turn>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}",
|
||||
};
|
||||
std::vector<std::string> expected_substr = {
|
||||
"<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant",
|
||||
"[/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||
"</s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
|
||||
"[/INST] Hi there </s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||
std::vector<std::string> expected_output = {
|
||||
// teknium/OpenHermes-2.5-Mistral-7B
|
||||
"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nWho are you<|im_end|>\n<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant\n",
|
||||
// mistralai/Mistral-7B-Instruct-v0.2
|
||||
"[INST] You are a helpful assistant\nHello [/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||
// TheBloke/FusionNet_34Bx2_MoE-AWQ
|
||||
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
|
||||
// bofenghuang/vigogne-2-70b-chat
|
||||
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||
// mlabonne/AlphaMonarch-7B
|
||||
"system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
|
||||
// google/gemma-7b-it
|
||||
"<start_of_turn>user\nYou are a helpful assistant\n\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
|
||||
};
|
||||
std::vector<char> formatted_chat(1024);
|
||||
int32_t res;
|
||||
@ -43,7 +55,7 @@ int main(void) {
|
||||
|
||||
for (size_t i = 0; i < templates.size(); i++) {
|
||||
std::string custom_template = templates[i];
|
||||
std::string substr = expected_substr[i];
|
||||
std::string expected = expected_output[i];
|
||||
formatted_chat.resize(1024);
|
||||
res = llama_chat_apply_template(
|
||||
nullptr,
|
||||
@ -57,8 +69,7 @@ int main(void) {
|
||||
formatted_chat.resize(res);
|
||||
std::string output(formatted_chat.data(), formatted_chat.size());
|
||||
std::cout << output << "\n-------------------------\n";
|
||||
// expect the "formatted_chat" to contain pre-defined strings
|
||||
assert(output.find(substr) != std::string::npos);
|
||||
assert(output == expected);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -118,7 +118,7 @@ int main(void) {
|
||||
const float fe = ggml_get_f32_1d(e, 0);
|
||||
printf("%s: e = %.4f\n", __func__, fe);
|
||||
|
||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
|
||||
ggml_opt(ctx, opt_params, e);
|
||||
|
||||
|
@ -150,7 +150,9 @@ int main(int argc, char * argv[]) {
|
||||
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
|
||||
const float max_quantization_error =
|
||||
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_IQ2_S ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
type == GGML_TYPE_IQ3_S ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR;
|
||||
failed = !(total_error < max_quantization_error);
|
||||
num_failed += failed;
|
||||
@ -167,7 +169,9 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
|
||||
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_DOT_PRODUCT_ERROR_LOWBIT : MAX_DOT_PRODUCT_ERROR;
|
||||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S
|
||||
? MAX_DOT_PRODUCT_ERROR_LOWBIT
|
||||
: MAX_DOT_PRODUCT_ERROR;
|
||||
failed = !(vec_dot_error < max_allowed_error);
|
||||
num_failed += failed;
|
||||
if (failed || verbose) {
|
||||
|
311
unicode.h
311
unicode.h
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
@ -223,6 +224,313 @@ static const std::vector<std::pair<uint32_t, uint32_t>> control_ranges = {
|
||||
{0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF},
|
||||
};
|
||||
|
||||
static const std::multimap<uint32_t, uint32_t> nfd_map = {
|
||||
{0xC0, 0x41}, {0xC0, 0x300}, {0xC1, 0x41}, {0xC1, 0x301}, {0xC2, 0x41}, {0xC2, 0x302}, {0xC3, 0x41}, {0xC3, 0x303}, {0xC4, 0x41}, {0xC4, 0x308}, {0xC5, 0x41}, {0xC5, 0x30A}, {0xC7, 0x43},
|
||||
{0xC7, 0x327}, {0xC8, 0x45}, {0xC8, 0x300}, {0xC9, 0x45}, {0xC9, 0x301}, {0xCA, 0x45}, {0xCA, 0x302}, {0xCB, 0x45}, {0xCB, 0x308}, {0xCC, 0x49}, {0xCC, 0x300}, {0xCD, 0x49}, {0xCD, 0x301},
|
||||
{0xCE, 0x49}, {0xCE, 0x302}, {0xCF, 0x49}, {0xCF, 0x308}, {0xD1, 0x4E}, {0xD1, 0x303}, {0xD2, 0x4F}, {0xD2, 0x300}, {0xD3, 0x4F}, {0xD3, 0x301}, {0xD4, 0x4F}, {0xD4, 0x302}, {0xD5, 0x4F},
|
||||
{0xD5, 0x303}, {0xD6, 0x4F}, {0xD6, 0x308}, {0xD9, 0x55}, {0xD9, 0x300}, {0xDA, 0x55}, {0xDA, 0x301}, {0xDB, 0x55}, {0xDB, 0x302}, {0xDC, 0x55}, {0xDC, 0x308}, {0xDD, 0x59}, {0xDD, 0x301},
|
||||
{0xE0, 0x61}, {0xE0, 0x300}, {0xE1, 0x61}, {0xE1, 0x301}, {0xE2, 0x61}, {0xE2, 0x302}, {0xE3, 0x61}, {0xE3, 0x303}, {0xE4, 0x61}, {0xE4, 0x308}, {0xE5, 0x61}, {0xE5, 0x30A}, {0xE7, 0x63},
|
||||
{0xE7, 0x327}, {0xE8, 0x65}, {0xE8, 0x300}, {0xE9, 0x65}, {0xE9, 0x301}, {0xEA, 0x65}, {0xEA, 0x302}, {0xEB, 0x65}, {0xEB, 0x308}, {0xEC, 0x69}, {0xEC, 0x300}, {0xED, 0x69}, {0xED, 0x301},
|
||||
{0xEE, 0x69}, {0xEE, 0x302}, {0xEF, 0x69}, {0xEF, 0x308}, {0xF1, 0x6E}, {0xF1, 0x303}, {0xF2, 0x6F}, {0xF2, 0x300}, {0xF3, 0x6F}, {0xF3, 0x301}, {0xF4, 0x6F}, {0xF4, 0x302}, {0xF5, 0x6F},
|
||||
{0xF5, 0x303}, {0xF6, 0x6F}, {0xF6, 0x308}, {0xF9, 0x75}, {0xF9, 0x300}, {0xFA, 0x75}, {0xFA, 0x301}, {0xFB, 0x75}, {0xFB, 0x302}, {0xFC, 0x75}, {0xFC, 0x308}, {0xFD, 0x79}, {0xFD, 0x301},
|
||||
{0xFF, 0x79}, {0xFF, 0x308}, {0x100, 0x41}, {0x100, 0x304}, {0x101, 0x61}, {0x101, 0x304}, {0x102, 0x41}, {0x102, 0x306}, {0x103, 0x61}, {0x103, 0x306}, {0x104, 0x41}, {0x104, 0x328}, {0x105, 0x61},
|
||||
{0x105, 0x328}, {0x106, 0x43}, {0x106, 0x301}, {0x107, 0x63}, {0x107, 0x301}, {0x108, 0x43}, {0x108, 0x302}, {0x109, 0x63}, {0x109, 0x302}, {0x10A, 0x43}, {0x10A, 0x307}, {0x10B, 0x63},
|
||||
{0x10B, 0x307}, {0x10C, 0x43}, {0x10C, 0x30C}, {0x10D, 0x63}, {0x10D, 0x30C}, {0x10E, 0x44}, {0x10E, 0x30C}, {0x10F, 0x64}, {0x10F, 0x30C}, {0x112, 0x45}, {0x112, 0x304}, {0x113, 0x65},
|
||||
{0x113, 0x304}, {0x114, 0x45}, {0x114, 0x306}, {0x115, 0x65}, {0x115, 0x306}, {0x116, 0x45}, {0x116, 0x307}, {0x117, 0x65}, {0x117, 0x307}, {0x118, 0x45}, {0x118, 0x328}, {0x119, 0x65},
|
||||
{0x119, 0x328}, {0x11A, 0x45}, {0x11A, 0x30C}, {0x11B, 0x65}, {0x11B, 0x30C}, {0x11C, 0x47}, {0x11C, 0x302}, {0x11D, 0x67}, {0x11D, 0x302}, {0x11E, 0x47}, {0x11E, 0x306}, {0x11F, 0x67},
|
||||
{0x11F, 0x306}, {0x120, 0x47}, {0x120, 0x307}, {0x121, 0x67}, {0x121, 0x307}, {0x122, 0x47}, {0x122, 0x327}, {0x123, 0x67}, {0x123, 0x327}, {0x124, 0x48}, {0x124, 0x302}, {0x125, 0x68},
|
||||
{0x125, 0x302}, {0x128, 0x49}, {0x128, 0x303}, {0x129, 0x69}, {0x129, 0x303}, {0x12A, 0x49}, {0x12A, 0x304}, {0x12B, 0x69}, {0x12B, 0x304}, {0x12C, 0x49}, {0x12C, 0x306}, {0x12D, 0x69},
|
||||
{0x12D, 0x306}, {0x12E, 0x49}, {0x12E, 0x328}, {0x12F, 0x69}, {0x12F, 0x328}, {0x130, 0x49}, {0x130, 0x307}, {0x134, 0x4A}, {0x134, 0x302}, {0x135, 0x6A}, {0x135, 0x302}, {0x136, 0x4B},
|
||||
{0x136, 0x327}, {0x137, 0x6B}, {0x137, 0x327}, {0x139, 0x4C}, {0x139, 0x301}, {0x13A, 0x6C}, {0x13A, 0x301}, {0x13B, 0x4C}, {0x13B, 0x327}, {0x13C, 0x6C}, {0x13C, 0x327}, {0x13D, 0x4C},
|
||||
{0x13D, 0x30C}, {0x13E, 0x6C}, {0x13E, 0x30C}, {0x143, 0x4E}, {0x143, 0x301}, {0x144, 0x6E}, {0x144, 0x301}, {0x145, 0x4E}, {0x145, 0x327}, {0x146, 0x6E}, {0x146, 0x327}, {0x147, 0x4E},
|
||||
{0x147, 0x30C}, {0x148, 0x6E}, {0x148, 0x30C}, {0x14C, 0x4F}, {0x14C, 0x304}, {0x14D, 0x6F}, {0x14D, 0x304}, {0x14E, 0x4F}, {0x14E, 0x306}, {0x14F, 0x6F}, {0x14F, 0x306}, {0x150, 0x4F},
|
||||
{0x150, 0x30B}, {0x151, 0x6F}, {0x151, 0x30B}, {0x154, 0x52}, {0x154, 0x301}, {0x155, 0x72}, {0x155, 0x301}, {0x156, 0x52}, {0x156, 0x327}, {0x157, 0x72}, {0x157, 0x327}, {0x158, 0x52},
|
||||
{0x158, 0x30C}, {0x159, 0x72}, {0x159, 0x30C}, {0x15A, 0x53}, {0x15A, 0x301}, {0x15B, 0x73}, {0x15B, 0x301}, {0x15C, 0x53}, {0x15C, 0x302}, {0x15D, 0x73}, {0x15D, 0x302}, {0x15E, 0x53},
|
||||
{0x15E, 0x327}, {0x15F, 0x73}, {0x15F, 0x327}, {0x160, 0x53}, {0x160, 0x30C}, {0x161, 0x73}, {0x161, 0x30C}, {0x162, 0x54}, {0x162, 0x327}, {0x163, 0x74}, {0x163, 0x327}, {0x164, 0x54},
|
||||
{0x164, 0x30C}, {0x165, 0x74}, {0x165, 0x30C}, {0x168, 0x55}, {0x168, 0x303}, {0x169, 0x75}, {0x169, 0x303}, {0x16A, 0x55}, {0x16A, 0x304}, {0x16B, 0x75}, {0x16B, 0x304}, {0x16C, 0x55},
|
||||
{0x16C, 0x306}, {0x16D, 0x75}, {0x16D, 0x306}, {0x16E, 0x55}, {0x16E, 0x30A}, {0x16F, 0x75}, {0x16F, 0x30A}, {0x170, 0x55}, {0x170, 0x30B}, {0x171, 0x75}, {0x171, 0x30B}, {0x172, 0x55},
|
||||
{0x172, 0x328}, {0x173, 0x75}, {0x173, 0x328}, {0x174, 0x57}, {0x174, 0x302}, {0x175, 0x77}, {0x175, 0x302}, {0x176, 0x59}, {0x176, 0x302}, {0x177, 0x79}, {0x177, 0x302}, {0x178, 0x59},
|
||||
{0x178, 0x308}, {0x179, 0x5A}, {0x179, 0x301}, {0x17A, 0x7A}, {0x17A, 0x301}, {0x17B, 0x5A}, {0x17B, 0x307}, {0x17C, 0x7A}, {0x17C, 0x307}, {0x17D, 0x5A}, {0x17D, 0x30C}, {0x17E, 0x7A},
|
||||
{0x17E, 0x30C}, {0x1A0, 0x4F}, {0x1A0, 0x31B}, {0x1A1, 0x6F}, {0x1A1, 0x31B}, {0x1AF, 0x55}, {0x1AF, 0x31B}, {0x1B0, 0x75}, {0x1B0, 0x31B}, {0x1CD, 0x41}, {0x1CD, 0x30C}, {0x1CE, 0x61},
|
||||
{0x1CE, 0x30C}, {0x1CF, 0x49}, {0x1CF, 0x30C}, {0x1D0, 0x69}, {0x1D0, 0x30C}, {0x1D1, 0x4F}, {0x1D1, 0x30C}, {0x1D2, 0x6F}, {0x1D2, 0x30C}, {0x1D3, 0x55}, {0x1D3, 0x30C}, {0x1D4, 0x75},
|
||||
{0x1D4, 0x30C}, {0x1D5, 0x55}, {0x1D5, 0x308}, {0x1D5, 0x304}, {0x1D6, 0x75}, {0x1D6, 0x308}, {0x1D6, 0x304}, {0x1D7, 0x55}, {0x1D7, 0x308}, {0x1D7, 0x301}, {0x1D8, 0x75}, {0x1D8, 0x308},
|
||||
{0x1D8, 0x301}, {0x1D9, 0x55}, {0x1D9, 0x308}, {0x1D9, 0x30C}, {0x1DA, 0x75}, {0x1DA, 0x308}, {0x1DA, 0x30C}, {0x1DB, 0x55}, {0x1DB, 0x308}, {0x1DB, 0x300}, {0x1DC, 0x75}, {0x1DC, 0x308},
|
||||
{0x1DC, 0x300}, {0x1DE, 0x41}, {0x1DE, 0x308}, {0x1DE, 0x304}, {0x1DF, 0x61}, {0x1DF, 0x308}, {0x1DF, 0x304}, {0x1E0, 0x41}, {0x1E0, 0x307}, {0x1E0, 0x304}, {0x1E1, 0x61}, {0x1E1, 0x307},
|
||||
{0x1E1, 0x304}, {0x1E2, 0xC6}, {0x1E2, 0x304}, {0x1E3, 0xE6}, {0x1E3, 0x304}, {0x1E6, 0x47}, {0x1E6, 0x30C}, {0x1E7, 0x67}, {0x1E7, 0x30C}, {0x1E8, 0x4B}, {0x1E8, 0x30C}, {0x1E9, 0x6B},
|
||||
{0x1E9, 0x30C}, {0x1EA, 0x4F}, {0x1EA, 0x328}, {0x1EB, 0x6F}, {0x1EB, 0x328}, {0x1EC, 0x4F}, {0x1EC, 0x328}, {0x1EC, 0x304}, {0x1ED, 0x6F}, {0x1ED, 0x328}, {0x1ED, 0x304}, {0x1EE, 0x1B7},
|
||||
{0x1EE, 0x30C}, {0x1EF, 0x292}, {0x1EF, 0x30C}, {0x1F0, 0x6A}, {0x1F0, 0x30C}, {0x1F4, 0x47}, {0x1F4, 0x301}, {0x1F5, 0x67}, {0x1F5, 0x301}, {0x1F8, 0x4E}, {0x1F8, 0x300}, {0x1F9, 0x6E},
|
||||
{0x1F9, 0x300}, {0x1FA, 0x41}, {0x1FA, 0x30A}, {0x1FA, 0x301}, {0x1FB, 0x61}, {0x1FB, 0x30A}, {0x1FB, 0x301}, {0x1FC, 0xC6}, {0x1FC, 0x301}, {0x1FD, 0xE6}, {0x1FD, 0x301}, {0x1FE, 0xD8},
|
||||
{0x1FE, 0x301}, {0x1FF, 0xF8}, {0x1FF, 0x301}, {0x200, 0x41}, {0x200, 0x30F}, {0x201, 0x61}, {0x201, 0x30F}, {0x202, 0x41}, {0x202, 0x311}, {0x203, 0x61}, {0x203, 0x311}, {0x204, 0x45},
|
||||
{0x204, 0x30F}, {0x205, 0x65}, {0x205, 0x30F}, {0x206, 0x45}, {0x206, 0x311}, {0x207, 0x65}, {0x207, 0x311}, {0x208, 0x49}, {0x208, 0x30F}, {0x209, 0x69}, {0x209, 0x30F}, {0x20A, 0x49},
|
||||
{0x20A, 0x311}, {0x20B, 0x69}, {0x20B, 0x311}, {0x20C, 0x4F}, {0x20C, 0x30F}, {0x20D, 0x6F}, {0x20D, 0x30F}, {0x20E, 0x4F}, {0x20E, 0x311}, {0x20F, 0x6F}, {0x20F, 0x311}, {0x210, 0x52},
|
||||
{0x210, 0x30F}, {0x211, 0x72}, {0x211, 0x30F}, {0x212, 0x52}, {0x212, 0x311}, {0x213, 0x72}, {0x213, 0x311}, {0x214, 0x55}, {0x214, 0x30F}, {0x215, 0x75}, {0x215, 0x30F}, {0x216, 0x55},
|
||||
{0x216, 0x311}, {0x217, 0x75}, {0x217, 0x311}, {0x218, 0x53}, {0x218, 0x326}, {0x219, 0x73}, {0x219, 0x326}, {0x21A, 0x54}, {0x21A, 0x326}, {0x21B, 0x74}, {0x21B, 0x326}, {0x21E, 0x48},
|
||||
{0x21E, 0x30C}, {0x21F, 0x68}, {0x21F, 0x30C}, {0x226, 0x41}, {0x226, 0x307}, {0x227, 0x61}, {0x227, 0x307}, {0x228, 0x45}, {0x228, 0x327}, {0x229, 0x65}, {0x229, 0x327}, {0x22A, 0x4F},
|
||||
{0x22A, 0x308}, {0x22A, 0x304}, {0x22B, 0x6F}, {0x22B, 0x308}, {0x22B, 0x304}, {0x22C, 0x4F}, {0x22C, 0x303}, {0x22C, 0x304}, {0x22D, 0x6F}, {0x22D, 0x303}, {0x22D, 0x304}, {0x22E, 0x4F},
|
||||
{0x22E, 0x307}, {0x22F, 0x6F}, {0x22F, 0x307}, {0x230, 0x4F}, {0x230, 0x307}, {0x230, 0x304}, {0x231, 0x6F}, {0x231, 0x307}, {0x231, 0x304}, {0x232, 0x59}, {0x232, 0x304}, {0x233, 0x79},
|
||||
{0x233, 0x304}, {0x340, 0x300}, {0x341, 0x301}, {0x343, 0x313}, {0x344, 0x308}, {0x344, 0x301}, {0x374, 0x2B9}, {0x37E, 0x3B}, {0x385, 0xA8}, {0x385, 0x301}, {0x386, 0x391}, {0x386, 0x301},
|
||||
{0x387, 0xB7}, {0x388, 0x395}, {0x388, 0x301}, {0x389, 0x397}, {0x389, 0x301}, {0x38A, 0x399}, {0x38A, 0x301}, {0x38C, 0x39F}, {0x38C, 0x301}, {0x38E, 0x3A5}, {0x38E, 0x301}, {0x38F, 0x3A9},
|
||||
{0x38F, 0x301}, {0x390, 0x3B9}, {0x390, 0x308}, {0x390, 0x301}, {0x3AA, 0x399}, {0x3AA, 0x308}, {0x3AB, 0x3A5}, {0x3AB, 0x308}, {0x3AC, 0x3B1}, {0x3AC, 0x301}, {0x3AD, 0x3B5}, {0x3AD, 0x301},
|
||||
{0x3AE, 0x3B7}, {0x3AE, 0x301}, {0x3AF, 0x3B9}, {0x3AF, 0x301}, {0x3B0, 0x3C5}, {0x3B0, 0x308}, {0x3B0, 0x301}, {0x3CA, 0x3B9}, {0x3CA, 0x308}, {0x3CB, 0x3C5}, {0x3CB, 0x308}, {0x3CC, 0x3BF},
|
||||
{0x3CC, 0x301}, {0x3CD, 0x3C5}, {0x3CD, 0x301}, {0x3CE, 0x3C9}, {0x3CE, 0x301}, {0x3D3, 0x3D2}, {0x3D3, 0x301}, {0x3D4, 0x3D2}, {0x3D4, 0x308}, {0x400, 0x415}, {0x400, 0x300}, {0x401, 0x415},
|
||||
{0x401, 0x308}, {0x403, 0x413}, {0x403, 0x301}, {0x407, 0x406}, {0x407, 0x308}, {0x40C, 0x41A}, {0x40C, 0x301}, {0x40D, 0x418}, {0x40D, 0x300}, {0x40E, 0x423}, {0x40E, 0x306}, {0x419, 0x418},
|
||||
{0x419, 0x306}, {0x439, 0x438}, {0x439, 0x306}, {0x450, 0x435}, {0x450, 0x300}, {0x451, 0x435}, {0x451, 0x308}, {0x453, 0x433}, {0x453, 0x301}, {0x457, 0x456}, {0x457, 0x308}, {0x45C, 0x43A},
|
||||
{0x45C, 0x301}, {0x45D, 0x438}, {0x45D, 0x300}, {0x45E, 0x443}, {0x45E, 0x306}, {0x476, 0x474}, {0x476, 0x30F}, {0x477, 0x475}, {0x477, 0x30F}, {0x4C1, 0x416}, {0x4C1, 0x306}, {0x4C2, 0x436},
|
||||
{0x4C2, 0x306}, {0x4D0, 0x410}, {0x4D0, 0x306}, {0x4D1, 0x430}, {0x4D1, 0x306}, {0x4D2, 0x410}, {0x4D2, 0x308}, {0x4D3, 0x430}, {0x4D3, 0x308}, {0x4D6, 0x415}, {0x4D6, 0x306}, {0x4D7, 0x435},
|
||||
{0x4D7, 0x306}, {0x4DA, 0x4D8}, {0x4DA, 0x308}, {0x4DB, 0x4D9}, {0x4DB, 0x308}, {0x4DC, 0x416}, {0x4DC, 0x308}, {0x4DD, 0x436}, {0x4DD, 0x308}, {0x4DE, 0x417}, {0x4DE, 0x308}, {0x4DF, 0x437},
|
||||
{0x4DF, 0x308}, {0x4E2, 0x418}, {0x4E2, 0x304}, {0x4E3, 0x438}, {0x4E3, 0x304}, {0x4E4, 0x418}, {0x4E4, 0x308}, {0x4E5, 0x438}, {0x4E5, 0x308}, {0x4E6, 0x41E}, {0x4E6, 0x308}, {0x4E7, 0x43E},
|
||||
{0x4E7, 0x308}, {0x4EA, 0x4E8}, {0x4EA, 0x308}, {0x4EB, 0x4E9}, {0x4EB, 0x308}, {0x4EC, 0x42D}, {0x4EC, 0x308}, {0x4ED, 0x44D}, {0x4ED, 0x308}, {0x4EE, 0x423}, {0x4EE, 0x304}, {0x4EF, 0x443},
|
||||
{0x4EF, 0x304}, {0x4F0, 0x423}, {0x4F0, 0x308}, {0x4F1, 0x443}, {0x4F1, 0x308}, {0x4F2, 0x423}, {0x4F2, 0x30B}, {0x4F3, 0x443}, {0x4F3, 0x30B}, {0x4F4, 0x427}, {0x4F4, 0x308}, {0x4F5, 0x447},
|
||||
{0x4F5, 0x308}, {0x4F8, 0x42B}, {0x4F8, 0x308}, {0x4F9, 0x44B}, {0x4F9, 0x308}, {0x622, 0x627}, {0x622, 0x653}, {0x623, 0x627}, {0x623, 0x654}, {0x624, 0x648}, {0x624, 0x654}, {0x625, 0x627},
|
||||
{0x625, 0x655}, {0x626, 0x64A}, {0x626, 0x654}, {0x6C0, 0x6D5}, {0x6C0, 0x654}, {0x6C2, 0x6C1}, {0x6C2, 0x654}, {0x6D3, 0x6D2}, {0x6D3, 0x654}, {0x929, 0x928}, {0x929, 0x93C}, {0x931, 0x930},
|
||||
{0x931, 0x93C}, {0x934, 0x933}, {0x934, 0x93C}, {0x958, 0x915}, {0x958, 0x93C}, {0x959, 0x916}, {0x959, 0x93C}, {0x95A, 0x917}, {0x95A, 0x93C}, {0x95B, 0x91C}, {0x95B, 0x93C}, {0x95C, 0x921},
|
||||
{0x95C, 0x93C}, {0x95D, 0x922}, {0x95D, 0x93C}, {0x95E, 0x92B}, {0x95E, 0x93C}, {0x95F, 0x92F}, {0x95F, 0x93C}, {0x9CB, 0x9C7}, {0x9CB, 0x9BE}, {0x9CC, 0x9C7}, {0x9CC, 0x9D7}, {0x9DC, 0x9A1},
|
||||
{0x9DC, 0x9BC}, {0x9DD, 0x9A2}, {0x9DD, 0x9BC}, {0x9DF, 0x9AF}, {0x9DF, 0x9BC}, {0xA33, 0xA32}, {0xA33, 0xA3C}, {0xA36, 0xA38}, {0xA36, 0xA3C}, {0xA59, 0xA16}, {0xA59, 0xA3C}, {0xA5A, 0xA17},
|
||||
{0xA5A, 0xA3C}, {0xA5B, 0xA1C}, {0xA5B, 0xA3C}, {0xA5E, 0xA2B}, {0xA5E, 0xA3C}, {0xB48, 0xB47}, {0xB48, 0xB56}, {0xB4B, 0xB47}, {0xB4B, 0xB3E}, {0xB4C, 0xB47}, {0xB4C, 0xB57}, {0xB5C, 0xB21},
|
||||
{0xB5C, 0xB3C}, {0xB5D, 0xB22}, {0xB5D, 0xB3C}, {0xB94, 0xB92}, {0xB94, 0xBD7}, {0xBCA, 0xBC6}, {0xBCA, 0xBBE}, {0xBCB, 0xBC7}, {0xBCB, 0xBBE}, {0xBCC, 0xBC6}, {0xBCC, 0xBD7}, {0xC48, 0xC46},
|
||||
{0xC48, 0xC56}, {0xCC0, 0xCBF}, {0xCC0, 0xCD5}, {0xCC7, 0xCC6}, {0xCC7, 0xCD5}, {0xCC8, 0xCC6}, {0xCC8, 0xCD6}, {0xCCA, 0xCC6}, {0xCCA, 0xCC2}, {0xCCB, 0xCC6}, {0xCCB, 0xCC2}, {0xCCB, 0xCD5},
|
||||
{0xD4A, 0xD46}, {0xD4A, 0xD3E}, {0xD4B, 0xD47}, {0xD4B, 0xD3E}, {0xD4C, 0xD46}, {0xD4C, 0xD57}, {0xDDA, 0xDD9}, {0xDDA, 0xDCA}, {0xDDC, 0xDD9}, {0xDDC, 0xDCF}, {0xDDD, 0xDD9}, {0xDDD, 0xDCF},
|
||||
{0xDDD, 0xDCA}, {0xDDE, 0xDD9}, {0xDDE, 0xDDF}, {0xF43, 0xF42}, {0xF43, 0xFB7}, {0xF4D, 0xF4C}, {0xF4D, 0xFB7}, {0xF52, 0xF51}, {0xF52, 0xFB7}, {0xF57, 0xF56}, {0xF57, 0xFB7}, {0xF5C, 0xF5B},
|
||||
{0xF5C, 0xFB7}, {0xF69, 0xF40}, {0xF69, 0xFB5}, {0xF73, 0xF71}, {0xF73, 0xF72}, {0xF75, 0xF71}, {0xF75, 0xF74}, {0xF76, 0xFB2}, {0xF76, 0xF80}, {0xF78, 0xFB3}, {0xF78, 0xF80}, {0xF81, 0xF71},
|
||||
{0xF81, 0xF80}, {0xF93, 0xF92}, {0xF93, 0xFB7}, {0xF9D, 0xF9C}, {0xF9D, 0xFB7}, {0xFA2, 0xFA1}, {0xFA2, 0xFB7}, {0xFA7, 0xFA6}, {0xFA7, 0xFB7}, {0xFAC, 0xFAB}, {0xFAC, 0xFB7}, {0xFB9, 0xF90},
|
||||
{0xFB9, 0xFB5}, {0x1026, 0x1025}, {0x1026, 0x102E}, {0x1B06, 0x1B05}, {0x1B06, 0x1B35}, {0x1B08, 0x1B07}, {0x1B08, 0x1B35}, {0x1B0A, 0x1B09}, {0x1B0A, 0x1B35}, {0x1B0C, 0x1B0B}, {0x1B0C, 0x1B35},
|
||||
{0x1B0E, 0x1B0D}, {0x1B0E, 0x1B35}, {0x1B12, 0x1B11}, {0x1B12, 0x1B35}, {0x1B3B, 0x1B3A}, {0x1B3B, 0x1B35}, {0x1B3D, 0x1B3C}, {0x1B3D, 0x1B35}, {0x1B40, 0x1B3E}, {0x1B40, 0x1B35}, {0x1B41, 0x1B3F},
|
||||
{0x1B41, 0x1B35}, {0x1B43, 0x1B42}, {0x1B43, 0x1B35}, {0x1E00, 0x41}, {0x1E00, 0x325}, {0x1E01, 0x61}, {0x1E01, 0x325}, {0x1E02, 0x42}, {0x1E02, 0x307}, {0x1E03, 0x62}, {0x1E03, 0x307},
|
||||
{0x1E04, 0x42}, {0x1E04, 0x323}, {0x1E05, 0x62}, {0x1E05, 0x323}, {0x1E06, 0x42}, {0x1E06, 0x331}, {0x1E07, 0x62}, {0x1E07, 0x331}, {0x1E08, 0x43}, {0x1E08, 0x327}, {0x1E08, 0x301}, {0x1E09, 0x63},
|
||||
{0x1E09, 0x327}, {0x1E09, 0x301}, {0x1E0A, 0x44}, {0x1E0A, 0x307}, {0x1E0B, 0x64}, {0x1E0B, 0x307}, {0x1E0C, 0x44}, {0x1E0C, 0x323}, {0x1E0D, 0x64}, {0x1E0D, 0x323}, {0x1E0E, 0x44}, {0x1E0E, 0x331},
|
||||
{0x1E0F, 0x64}, {0x1E0F, 0x331}, {0x1E10, 0x44}, {0x1E10, 0x327}, {0x1E11, 0x64}, {0x1E11, 0x327}, {0x1E12, 0x44}, {0x1E12, 0x32D}, {0x1E13, 0x64}, {0x1E13, 0x32D}, {0x1E14, 0x45}, {0x1E14, 0x304},
|
||||
{0x1E14, 0x300}, {0x1E15, 0x65}, {0x1E15, 0x304}, {0x1E15, 0x300}, {0x1E16, 0x45}, {0x1E16, 0x304}, {0x1E16, 0x301}, {0x1E17, 0x65}, {0x1E17, 0x304}, {0x1E17, 0x301}, {0x1E18, 0x45}, {0x1E18, 0x32D},
|
||||
{0x1E19, 0x65}, {0x1E19, 0x32D}, {0x1E1A, 0x45}, {0x1E1A, 0x330}, {0x1E1B, 0x65}, {0x1E1B, 0x330}, {0x1E1C, 0x45}, {0x1E1C, 0x327}, {0x1E1C, 0x306}, {0x1E1D, 0x65}, {0x1E1D, 0x327}, {0x1E1D, 0x306},
|
||||
{0x1E1E, 0x46}, {0x1E1E, 0x307}, {0x1E1F, 0x66}, {0x1E1F, 0x307}, {0x1E20, 0x47}, {0x1E20, 0x304}, {0x1E21, 0x67}, {0x1E21, 0x304}, {0x1E22, 0x48}, {0x1E22, 0x307}, {0x1E23, 0x68}, {0x1E23, 0x307},
|
||||
{0x1E24, 0x48}, {0x1E24, 0x323}, {0x1E25, 0x68}, {0x1E25, 0x323}, {0x1E26, 0x48}, {0x1E26, 0x308}, {0x1E27, 0x68}, {0x1E27, 0x308}, {0x1E28, 0x48}, {0x1E28, 0x327}, {0x1E29, 0x68}, {0x1E29, 0x327},
|
||||
{0x1E2A, 0x48}, {0x1E2A, 0x32E}, {0x1E2B, 0x68}, {0x1E2B, 0x32E}, {0x1E2C, 0x49}, {0x1E2C, 0x330}, {0x1E2D, 0x69}, {0x1E2D, 0x330}, {0x1E2E, 0x49}, {0x1E2E, 0x308}, {0x1E2E, 0x301}, {0x1E2F, 0x69},
|
||||
{0x1E2F, 0x308}, {0x1E2F, 0x301}, {0x1E30, 0x4B}, {0x1E30, 0x301}, {0x1E31, 0x6B}, {0x1E31, 0x301}, {0x1E32, 0x4B}, {0x1E32, 0x323}, {0x1E33, 0x6B}, {0x1E33, 0x323}, {0x1E34, 0x4B}, {0x1E34, 0x331},
|
||||
{0x1E35, 0x6B}, {0x1E35, 0x331}, {0x1E36, 0x4C}, {0x1E36, 0x323}, {0x1E37, 0x6C}, {0x1E37, 0x323}, {0x1E38, 0x4C}, {0x1E38, 0x323}, {0x1E38, 0x304}, {0x1E39, 0x6C}, {0x1E39, 0x323}, {0x1E39, 0x304},
|
||||
{0x1E3A, 0x4C}, {0x1E3A, 0x331}, {0x1E3B, 0x6C}, {0x1E3B, 0x331}, {0x1E3C, 0x4C}, {0x1E3C, 0x32D}, {0x1E3D, 0x6C}, {0x1E3D, 0x32D}, {0x1E3E, 0x4D}, {0x1E3E, 0x301}, {0x1E3F, 0x6D}, {0x1E3F, 0x301},
|
||||
{0x1E40, 0x4D}, {0x1E40, 0x307}, {0x1E41, 0x6D}, {0x1E41, 0x307}, {0x1E42, 0x4D}, {0x1E42, 0x323}, {0x1E43, 0x6D}, {0x1E43, 0x323}, {0x1E44, 0x4E}, {0x1E44, 0x307}, {0x1E45, 0x6E}, {0x1E45, 0x307},
|
||||
{0x1E46, 0x4E}, {0x1E46, 0x323}, {0x1E47, 0x6E}, {0x1E47, 0x323}, {0x1E48, 0x4E}, {0x1E48, 0x331}, {0x1E49, 0x6E}, {0x1E49, 0x331}, {0x1E4A, 0x4E}, {0x1E4A, 0x32D}, {0x1E4B, 0x6E}, {0x1E4B, 0x32D},
|
||||
{0x1E4C, 0x4F}, {0x1E4C, 0x303}, {0x1E4C, 0x301}, {0x1E4D, 0x6F}, {0x1E4D, 0x303}, {0x1E4D, 0x301}, {0x1E4E, 0x4F}, {0x1E4E, 0x303}, {0x1E4E, 0x308}, {0x1E4F, 0x6F}, {0x1E4F, 0x303}, {0x1E4F, 0x308},
|
||||
{0x1E50, 0x4F}, {0x1E50, 0x304}, {0x1E50, 0x300}, {0x1E51, 0x6F}, {0x1E51, 0x304}, {0x1E51, 0x300}, {0x1E52, 0x4F}, {0x1E52, 0x304}, {0x1E52, 0x301}, {0x1E53, 0x6F}, {0x1E53, 0x304}, {0x1E53, 0x301},
|
||||
{0x1E54, 0x50}, {0x1E54, 0x301}, {0x1E55, 0x70}, {0x1E55, 0x301}, {0x1E56, 0x50}, {0x1E56, 0x307}, {0x1E57, 0x70}, {0x1E57, 0x307}, {0x1E58, 0x52}, {0x1E58, 0x307}, {0x1E59, 0x72}, {0x1E59, 0x307},
|
||||
{0x1E5A, 0x52}, {0x1E5A, 0x323}, {0x1E5B, 0x72}, {0x1E5B, 0x323}, {0x1E5C, 0x52}, {0x1E5C, 0x323}, {0x1E5C, 0x304}, {0x1E5D, 0x72}, {0x1E5D, 0x323}, {0x1E5D, 0x304}, {0x1E5E, 0x52}, {0x1E5E, 0x331},
|
||||
{0x1E5F, 0x72}, {0x1E5F, 0x331}, {0x1E60, 0x53}, {0x1E60, 0x307}, {0x1E61, 0x73}, {0x1E61, 0x307}, {0x1E62, 0x53}, {0x1E62, 0x323}, {0x1E63, 0x73}, {0x1E63, 0x323}, {0x1E64, 0x53}, {0x1E64, 0x301},
|
||||
{0x1E64, 0x307}, {0x1E65, 0x73}, {0x1E65, 0x301}, {0x1E65, 0x307}, {0x1E66, 0x53}, {0x1E66, 0x30C}, {0x1E66, 0x307}, {0x1E67, 0x73}, {0x1E67, 0x30C}, {0x1E67, 0x307}, {0x1E68, 0x53}, {0x1E68, 0x323},
|
||||
{0x1E68, 0x307}, {0x1E69, 0x73}, {0x1E69, 0x323}, {0x1E69, 0x307}, {0x1E6A, 0x54}, {0x1E6A, 0x307}, {0x1E6B, 0x74}, {0x1E6B, 0x307}, {0x1E6C, 0x54}, {0x1E6C, 0x323}, {0x1E6D, 0x74}, {0x1E6D, 0x323},
|
||||
{0x1E6E, 0x54}, {0x1E6E, 0x331}, {0x1E6F, 0x74}, {0x1E6F, 0x331}, {0x1E70, 0x54}, {0x1E70, 0x32D}, {0x1E71, 0x74}, {0x1E71, 0x32D}, {0x1E72, 0x55}, {0x1E72, 0x324}, {0x1E73, 0x75}, {0x1E73, 0x324},
|
||||
{0x1E74, 0x55}, {0x1E74, 0x330}, {0x1E75, 0x75}, {0x1E75, 0x330}, {0x1E76, 0x55}, {0x1E76, 0x32D}, {0x1E77, 0x75}, {0x1E77, 0x32D}, {0x1E78, 0x55}, {0x1E78, 0x303}, {0x1E78, 0x301}, {0x1E79, 0x75},
|
||||
{0x1E79, 0x303}, {0x1E79, 0x301}, {0x1E7A, 0x55}, {0x1E7A, 0x304}, {0x1E7A, 0x308}, {0x1E7B, 0x75}, {0x1E7B, 0x304}, {0x1E7B, 0x308}, {0x1E7C, 0x56}, {0x1E7C, 0x303}, {0x1E7D, 0x76}, {0x1E7D, 0x303},
|
||||
{0x1E7E, 0x56}, {0x1E7E, 0x323}, {0x1E7F, 0x76}, {0x1E7F, 0x323}, {0x1E80, 0x57}, {0x1E80, 0x300}, {0x1E81, 0x77}, {0x1E81, 0x300}, {0x1E82, 0x57}, {0x1E82, 0x301}, {0x1E83, 0x77}, {0x1E83, 0x301},
|
||||
{0x1E84, 0x57}, {0x1E84, 0x308}, {0x1E85, 0x77}, {0x1E85, 0x308}, {0x1E86, 0x57}, {0x1E86, 0x307}, {0x1E87, 0x77}, {0x1E87, 0x307}, {0x1E88, 0x57}, {0x1E88, 0x323}, {0x1E89, 0x77}, {0x1E89, 0x323},
|
||||
{0x1E8A, 0x58}, {0x1E8A, 0x307}, {0x1E8B, 0x78}, {0x1E8B, 0x307}, {0x1E8C, 0x58}, {0x1E8C, 0x308}, {0x1E8D, 0x78}, {0x1E8D, 0x308}, {0x1E8E, 0x59}, {0x1E8E, 0x307}, {0x1E8F, 0x79}, {0x1E8F, 0x307},
|
||||
{0x1E90, 0x5A}, {0x1E90, 0x302}, {0x1E91, 0x7A}, {0x1E91, 0x302}, {0x1E92, 0x5A}, {0x1E92, 0x323}, {0x1E93, 0x7A}, {0x1E93, 0x323}, {0x1E94, 0x5A}, {0x1E94, 0x331}, {0x1E95, 0x7A}, {0x1E95, 0x331},
|
||||
{0x1E96, 0x68}, {0x1E96, 0x331}, {0x1E97, 0x74}, {0x1E97, 0x308}, {0x1E98, 0x77}, {0x1E98, 0x30A}, {0x1E99, 0x79}, {0x1E99, 0x30A}, {0x1E9B, 0x17F}, {0x1E9B, 0x307}, {0x1EA0, 0x41}, {0x1EA0, 0x323},
|
||||
{0x1EA1, 0x61}, {0x1EA1, 0x323}, {0x1EA2, 0x41}, {0x1EA2, 0x309}, {0x1EA3, 0x61}, {0x1EA3, 0x309}, {0x1EA4, 0x41}, {0x1EA4, 0x302}, {0x1EA4, 0x301}, {0x1EA5, 0x61}, {0x1EA5, 0x302}, {0x1EA5, 0x301},
|
||||
{0x1EA6, 0x41}, {0x1EA6, 0x302}, {0x1EA6, 0x300}, {0x1EA7, 0x61}, {0x1EA7, 0x302}, {0x1EA7, 0x300}, {0x1EA8, 0x41}, {0x1EA8, 0x302}, {0x1EA8, 0x309}, {0x1EA9, 0x61}, {0x1EA9, 0x302}, {0x1EA9, 0x309},
|
||||
{0x1EAA, 0x41}, {0x1EAA, 0x302}, {0x1EAA, 0x303}, {0x1EAB, 0x61}, {0x1EAB, 0x302}, {0x1EAB, 0x303}, {0x1EAC, 0x41}, {0x1EAC, 0x323}, {0x1EAC, 0x302}, {0x1EAD, 0x61}, {0x1EAD, 0x323}, {0x1EAD, 0x302},
|
||||
{0x1EAE, 0x41}, {0x1EAE, 0x306}, {0x1EAE, 0x301}, {0x1EAF, 0x61}, {0x1EAF, 0x306}, {0x1EAF, 0x301}, {0x1EB0, 0x41}, {0x1EB0, 0x306}, {0x1EB0, 0x300}, {0x1EB1, 0x61}, {0x1EB1, 0x306}, {0x1EB1, 0x300},
|
||||
{0x1EB2, 0x41}, {0x1EB2, 0x306}, {0x1EB2, 0x309}, {0x1EB3, 0x61}, {0x1EB3, 0x306}, {0x1EB3, 0x309}, {0x1EB4, 0x41}, {0x1EB4, 0x306}, {0x1EB4, 0x303}, {0x1EB5, 0x61}, {0x1EB5, 0x306}, {0x1EB5, 0x303},
|
||||
{0x1EB6, 0x41}, {0x1EB6, 0x323}, {0x1EB6, 0x306}, {0x1EB7, 0x61}, {0x1EB7, 0x323}, {0x1EB7, 0x306}, {0x1EB8, 0x45}, {0x1EB8, 0x323}, {0x1EB9, 0x65}, {0x1EB9, 0x323}, {0x1EBA, 0x45}, {0x1EBA, 0x309},
|
||||
{0x1EBB, 0x65}, {0x1EBB, 0x309}, {0x1EBC, 0x45}, {0x1EBC, 0x303}, {0x1EBD, 0x65}, {0x1EBD, 0x303}, {0x1EBE, 0x45}, {0x1EBE, 0x302}, {0x1EBE, 0x301}, {0x1EBF, 0x65}, {0x1EBF, 0x302}, {0x1EBF, 0x301},
|
||||
{0x1EC0, 0x45}, {0x1EC0, 0x302}, {0x1EC0, 0x300}, {0x1EC1, 0x65}, {0x1EC1, 0x302}, {0x1EC1, 0x300}, {0x1EC2, 0x45}, {0x1EC2, 0x302}, {0x1EC2, 0x309}, {0x1EC3, 0x65}, {0x1EC3, 0x302}, {0x1EC3, 0x309},
|
||||
{0x1EC4, 0x45}, {0x1EC4, 0x302}, {0x1EC4, 0x303}, {0x1EC5, 0x65}, {0x1EC5, 0x302}, {0x1EC5, 0x303}, {0x1EC6, 0x45}, {0x1EC6, 0x323}, {0x1EC6, 0x302}, {0x1EC7, 0x65}, {0x1EC7, 0x323}, {0x1EC7, 0x302},
|
||||
{0x1EC8, 0x49}, {0x1EC8, 0x309}, {0x1EC9, 0x69}, {0x1EC9, 0x309}, {0x1ECA, 0x49}, {0x1ECA, 0x323}, {0x1ECB, 0x69}, {0x1ECB, 0x323}, {0x1ECC, 0x4F}, {0x1ECC, 0x323}, {0x1ECD, 0x6F}, {0x1ECD, 0x323},
|
||||
{0x1ECE, 0x4F}, {0x1ECE, 0x309}, {0x1ECF, 0x6F}, {0x1ECF, 0x309}, {0x1ED0, 0x4F}, {0x1ED0, 0x302}, {0x1ED0, 0x301}, {0x1ED1, 0x6F}, {0x1ED1, 0x302}, {0x1ED1, 0x301}, {0x1ED2, 0x4F}, {0x1ED2, 0x302},
|
||||
{0x1ED2, 0x300}, {0x1ED3, 0x6F}, {0x1ED3, 0x302}, {0x1ED3, 0x300}, {0x1ED4, 0x4F}, {0x1ED4, 0x302}, {0x1ED4, 0x309}, {0x1ED5, 0x6F}, {0x1ED5, 0x302}, {0x1ED5, 0x309}, {0x1ED6, 0x4F}, {0x1ED6, 0x302},
|
||||
{0x1ED6, 0x303}, {0x1ED7, 0x6F}, {0x1ED7, 0x302}, {0x1ED7, 0x303}, {0x1ED8, 0x4F}, {0x1ED8, 0x323}, {0x1ED8, 0x302}, {0x1ED9, 0x6F}, {0x1ED9, 0x323}, {0x1ED9, 0x302}, {0x1EDA, 0x4F}, {0x1EDA, 0x31B},
|
||||
{0x1EDA, 0x301}, {0x1EDB, 0x6F}, {0x1EDB, 0x31B}, {0x1EDB, 0x301}, {0x1EDC, 0x4F}, {0x1EDC, 0x31B}, {0x1EDC, 0x300}, {0x1EDD, 0x6F}, {0x1EDD, 0x31B}, {0x1EDD, 0x300}, {0x1EDE, 0x4F}, {0x1EDE, 0x31B},
|
||||
{0x1EDE, 0x309}, {0x1EDF, 0x6F}, {0x1EDF, 0x31B}, {0x1EDF, 0x309}, {0x1EE0, 0x4F}, {0x1EE0, 0x31B}, {0x1EE0, 0x303}, {0x1EE1, 0x6F}, {0x1EE1, 0x31B}, {0x1EE1, 0x303}, {0x1EE2, 0x4F}, {0x1EE2, 0x31B},
|
||||
{0x1EE2, 0x323}, {0x1EE3, 0x6F}, {0x1EE3, 0x31B}, {0x1EE3, 0x323}, {0x1EE4, 0x55}, {0x1EE4, 0x323}, {0x1EE5, 0x75}, {0x1EE5, 0x323}, {0x1EE6, 0x55}, {0x1EE6, 0x309}, {0x1EE7, 0x75}, {0x1EE7, 0x309},
|
||||
{0x1EE8, 0x55}, {0x1EE8, 0x31B}, {0x1EE8, 0x301}, {0x1EE9, 0x75}, {0x1EE9, 0x31B}, {0x1EE9, 0x301}, {0x1EEA, 0x55}, {0x1EEA, 0x31B}, {0x1EEA, 0x300}, {0x1EEB, 0x75}, {0x1EEB, 0x31B}, {0x1EEB, 0x300},
|
||||
{0x1EEC, 0x55}, {0x1EEC, 0x31B}, {0x1EEC, 0x309}, {0x1EED, 0x75}, {0x1EED, 0x31B}, {0x1EED, 0x309}, {0x1EEE, 0x55}, {0x1EEE, 0x31B}, {0x1EEE, 0x303}, {0x1EEF, 0x75}, {0x1EEF, 0x31B}, {0x1EEF, 0x303},
|
||||
{0x1EF0, 0x55}, {0x1EF0, 0x31B}, {0x1EF0, 0x323}, {0x1EF1, 0x75}, {0x1EF1, 0x31B}, {0x1EF1, 0x323}, {0x1EF2, 0x59}, {0x1EF2, 0x300}, {0x1EF3, 0x79}, {0x1EF3, 0x300}, {0x1EF4, 0x59}, {0x1EF4, 0x323},
|
||||
{0x1EF5, 0x79}, {0x1EF5, 0x323}, {0x1EF6, 0x59}, {0x1EF6, 0x309}, {0x1EF7, 0x79}, {0x1EF7, 0x309}, {0x1EF8, 0x59}, {0x1EF8, 0x303}, {0x1EF9, 0x79}, {0x1EF9, 0x303}, {0x1F00, 0x3B1}, {0x1F00, 0x313},
|
||||
{0x1F01, 0x3B1}, {0x1F01, 0x314}, {0x1F02, 0x3B1}, {0x1F02, 0x313}, {0x1F02, 0x300}, {0x1F03, 0x3B1}, {0x1F03, 0x314}, {0x1F03, 0x300}, {0x1F04, 0x3B1}, {0x1F04, 0x313}, {0x1F04, 0x301},
|
||||
{0x1F05, 0x3B1}, {0x1F05, 0x314}, {0x1F05, 0x301}, {0x1F06, 0x3B1}, {0x1F06, 0x313}, {0x1F06, 0x342}, {0x1F07, 0x3B1}, {0x1F07, 0x314}, {0x1F07, 0x342}, {0x1F08, 0x391}, {0x1F08, 0x313},
|
||||
{0x1F09, 0x391}, {0x1F09, 0x314}, {0x1F0A, 0x391}, {0x1F0A, 0x313}, {0x1F0A, 0x300}, {0x1F0B, 0x391}, {0x1F0B, 0x314}, {0x1F0B, 0x300}, {0x1F0C, 0x391}, {0x1F0C, 0x313}, {0x1F0C, 0x301},
|
||||
{0x1F0D, 0x391}, {0x1F0D, 0x314}, {0x1F0D, 0x301}, {0x1F0E, 0x391}, {0x1F0E, 0x313}, {0x1F0E, 0x342}, {0x1F0F, 0x391}, {0x1F0F, 0x314}, {0x1F0F, 0x342}, {0x1F10, 0x3B5}, {0x1F10, 0x313},
|
||||
{0x1F11, 0x3B5}, {0x1F11, 0x314}, {0x1F12, 0x3B5}, {0x1F12, 0x313}, {0x1F12, 0x300}, {0x1F13, 0x3B5}, {0x1F13, 0x314}, {0x1F13, 0x300}, {0x1F14, 0x3B5}, {0x1F14, 0x313}, {0x1F14, 0x301},
|
||||
{0x1F15, 0x3B5}, {0x1F15, 0x314}, {0x1F15, 0x301}, {0x1F18, 0x395}, {0x1F18, 0x313}, {0x1F19, 0x395}, {0x1F19, 0x314}, {0x1F1A, 0x395}, {0x1F1A, 0x313}, {0x1F1A, 0x300}, {0x1F1B, 0x395},
|
||||
{0x1F1B, 0x314}, {0x1F1B, 0x300}, {0x1F1C, 0x395}, {0x1F1C, 0x313}, {0x1F1C, 0x301}, {0x1F1D, 0x395}, {0x1F1D, 0x314}, {0x1F1D, 0x301}, {0x1F20, 0x3B7}, {0x1F20, 0x313}, {0x1F21, 0x3B7},
|
||||
{0x1F21, 0x314}, {0x1F22, 0x3B7}, {0x1F22, 0x313}, {0x1F22, 0x300}, {0x1F23, 0x3B7}, {0x1F23, 0x314}, {0x1F23, 0x300}, {0x1F24, 0x3B7}, {0x1F24, 0x313}, {0x1F24, 0x301}, {0x1F25, 0x3B7},
|
||||
{0x1F25, 0x314}, {0x1F25, 0x301}, {0x1F26, 0x3B7}, {0x1F26, 0x313}, {0x1F26, 0x342}, {0x1F27, 0x3B7}, {0x1F27, 0x314}, {0x1F27, 0x342}, {0x1F28, 0x397}, {0x1F28, 0x313}, {0x1F29, 0x397},
|
||||
{0x1F29, 0x314}, {0x1F2A, 0x397}, {0x1F2A, 0x313}, {0x1F2A, 0x300}, {0x1F2B, 0x397}, {0x1F2B, 0x314}, {0x1F2B, 0x300}, {0x1F2C, 0x397}, {0x1F2C, 0x313}, {0x1F2C, 0x301}, {0x1F2D, 0x397},
|
||||
{0x1F2D, 0x314}, {0x1F2D, 0x301}, {0x1F2E, 0x397}, {0x1F2E, 0x313}, {0x1F2E, 0x342}, {0x1F2F, 0x397}, {0x1F2F, 0x314}, {0x1F2F, 0x342}, {0x1F30, 0x3B9}, {0x1F30, 0x313}, {0x1F31, 0x3B9},
|
||||
{0x1F31, 0x314}, {0x1F32, 0x3B9}, {0x1F32, 0x313}, {0x1F32, 0x300}, {0x1F33, 0x3B9}, {0x1F33, 0x314}, {0x1F33, 0x300}, {0x1F34, 0x3B9}, {0x1F34, 0x313}, {0x1F34, 0x301}, {0x1F35, 0x3B9},
|
||||
{0x1F35, 0x314}, {0x1F35, 0x301}, {0x1F36, 0x3B9}, {0x1F36, 0x313}, {0x1F36, 0x342}, {0x1F37, 0x3B9}, {0x1F37, 0x314}, {0x1F37, 0x342}, {0x1F38, 0x399}, {0x1F38, 0x313}, {0x1F39, 0x399},
|
||||
{0x1F39, 0x314}, {0x1F3A, 0x399}, {0x1F3A, 0x313}, {0x1F3A, 0x300}, {0x1F3B, 0x399}, {0x1F3B, 0x314}, {0x1F3B, 0x300}, {0x1F3C, 0x399}, {0x1F3C, 0x313}, {0x1F3C, 0x301}, {0x1F3D, 0x399},
|
||||
{0x1F3D, 0x314}, {0x1F3D, 0x301}, {0x1F3E, 0x399}, {0x1F3E, 0x313}, {0x1F3E, 0x342}, {0x1F3F, 0x399}, {0x1F3F, 0x314}, {0x1F3F, 0x342}, {0x1F40, 0x3BF}, {0x1F40, 0x313}, {0x1F41, 0x3BF},
|
||||
{0x1F41, 0x314}, {0x1F42, 0x3BF}, {0x1F42, 0x313}, {0x1F42, 0x300}, {0x1F43, 0x3BF}, {0x1F43, 0x314}, {0x1F43, 0x300}, {0x1F44, 0x3BF}, {0x1F44, 0x313}, {0x1F44, 0x301}, {0x1F45, 0x3BF},
|
||||
{0x1F45, 0x314}, {0x1F45, 0x301}, {0x1F48, 0x39F}, {0x1F48, 0x313}, {0x1F49, 0x39F}, {0x1F49, 0x314}, {0x1F4A, 0x39F}, {0x1F4A, 0x313}, {0x1F4A, 0x300}, {0x1F4B, 0x39F}, {0x1F4B, 0x314},
|
||||
{0x1F4B, 0x300}, {0x1F4C, 0x39F}, {0x1F4C, 0x313}, {0x1F4C, 0x301}, {0x1F4D, 0x39F}, {0x1F4D, 0x314}, {0x1F4D, 0x301}, {0x1F50, 0x3C5}, {0x1F50, 0x313}, {0x1F51, 0x3C5}, {0x1F51, 0x314},
|
||||
{0x1F52, 0x3C5}, {0x1F52, 0x313}, {0x1F52, 0x300}, {0x1F53, 0x3C5}, {0x1F53, 0x314}, {0x1F53, 0x300}, {0x1F54, 0x3C5}, {0x1F54, 0x313}, {0x1F54, 0x301}, {0x1F55, 0x3C5}, {0x1F55, 0x314},
|
||||
{0x1F55, 0x301}, {0x1F56, 0x3C5}, {0x1F56, 0x313}, {0x1F56, 0x342}, {0x1F57, 0x3C5}, {0x1F57, 0x314}, {0x1F57, 0x342}, {0x1F59, 0x3A5}, {0x1F59, 0x314}, {0x1F5B, 0x3A5}, {0x1F5B, 0x314},
|
||||
{0x1F5B, 0x300}, {0x1F5D, 0x3A5}, {0x1F5D, 0x314}, {0x1F5D, 0x301}, {0x1F5F, 0x3A5}, {0x1F5F, 0x314}, {0x1F5F, 0x342}, {0x1F60, 0x3C9}, {0x1F60, 0x313}, {0x1F61, 0x3C9}, {0x1F61, 0x314},
|
||||
{0x1F62, 0x3C9}, {0x1F62, 0x313}, {0x1F62, 0x300}, {0x1F63, 0x3C9}, {0x1F63, 0x314}, {0x1F63, 0x300}, {0x1F64, 0x3C9}, {0x1F64, 0x313}, {0x1F64, 0x301}, {0x1F65, 0x3C9}, {0x1F65, 0x314},
|
||||
{0x1F65, 0x301}, {0x1F66, 0x3C9}, {0x1F66, 0x313}, {0x1F66, 0x342}, {0x1F67, 0x3C9}, {0x1F67, 0x314}, {0x1F67, 0x342}, {0x1F68, 0x3A9}, {0x1F68, 0x313}, {0x1F69, 0x3A9}, {0x1F69, 0x314},
|
||||
{0x1F6A, 0x3A9}, {0x1F6A, 0x313}, {0x1F6A, 0x300}, {0x1F6B, 0x3A9}, {0x1F6B, 0x314}, {0x1F6B, 0x300}, {0x1F6C, 0x3A9}, {0x1F6C, 0x313}, {0x1F6C, 0x301}, {0x1F6D, 0x3A9}, {0x1F6D, 0x314},
|
||||
{0x1F6D, 0x301}, {0x1F6E, 0x3A9}, {0x1F6E, 0x313}, {0x1F6E, 0x342}, {0x1F6F, 0x3A9}, {0x1F6F, 0x314}, {0x1F6F, 0x342}, {0x1F70, 0x3B1}, {0x1F70, 0x300}, {0x1F71, 0x3B1}, {0x1F71, 0x301},
|
||||
{0x1F72, 0x3B5}, {0x1F72, 0x300}, {0x1F73, 0x3B5}, {0x1F73, 0x301}, {0x1F74, 0x3B7}, {0x1F74, 0x300}, {0x1F75, 0x3B7}, {0x1F75, 0x301}, {0x1F76, 0x3B9}, {0x1F76, 0x300}, {0x1F77, 0x3B9},
|
||||
{0x1F77, 0x301}, {0x1F78, 0x3BF}, {0x1F78, 0x300}, {0x1F79, 0x3BF}, {0x1F79, 0x301}, {0x1F7A, 0x3C5}, {0x1F7A, 0x300}, {0x1F7B, 0x3C5}, {0x1F7B, 0x301}, {0x1F7C, 0x3C9}, {0x1F7C, 0x300},
|
||||
{0x1F7D, 0x3C9}, {0x1F7D, 0x301}, {0x1F80, 0x3B1}, {0x1F80, 0x313}, {0x1F80, 0x345}, {0x1F81, 0x3B1}, {0x1F81, 0x314}, {0x1F81, 0x345}, {0x1F82, 0x3B1}, {0x1F82, 0x313}, {0x1F82, 0x300},
|
||||
{0x1F82, 0x345}, {0x1F83, 0x3B1}, {0x1F83, 0x314}, {0x1F83, 0x300}, {0x1F83, 0x345}, {0x1F84, 0x3B1}, {0x1F84, 0x313}, {0x1F84, 0x301}, {0x1F84, 0x345}, {0x1F85, 0x3B1}, {0x1F85, 0x314},
|
||||
{0x1F85, 0x301}, {0x1F85, 0x345}, {0x1F86, 0x3B1}, {0x1F86, 0x313}, {0x1F86, 0x342}, {0x1F86, 0x345}, {0x1F87, 0x3B1}, {0x1F87, 0x314}, {0x1F87, 0x342}, {0x1F87, 0x345}, {0x1F88, 0x391},
|
||||
{0x1F88, 0x313}, {0x1F88, 0x345}, {0x1F89, 0x391}, {0x1F89, 0x314}, {0x1F89, 0x345}, {0x1F8A, 0x391}, {0x1F8A, 0x313}, {0x1F8A, 0x300}, {0x1F8A, 0x345}, {0x1F8B, 0x391}, {0x1F8B, 0x314},
|
||||
{0x1F8B, 0x300}, {0x1F8B, 0x345}, {0x1F8C, 0x391}, {0x1F8C, 0x313}, {0x1F8C, 0x301}, {0x1F8C, 0x345}, {0x1F8D, 0x391}, {0x1F8D, 0x314}, {0x1F8D, 0x301}, {0x1F8D, 0x345}, {0x1F8E, 0x391},
|
||||
{0x1F8E, 0x313}, {0x1F8E, 0x342}, {0x1F8E, 0x345}, {0x1F8F, 0x391}, {0x1F8F, 0x314}, {0x1F8F, 0x342}, {0x1F8F, 0x345}, {0x1F90, 0x3B7}, {0x1F90, 0x313}, {0x1F90, 0x345}, {0x1F91, 0x3B7},
|
||||
{0x1F91, 0x314}, {0x1F91, 0x345}, {0x1F92, 0x3B7}, {0x1F92, 0x313}, {0x1F92, 0x300}, {0x1F92, 0x345}, {0x1F93, 0x3B7}, {0x1F93, 0x314}, {0x1F93, 0x300}, {0x1F93, 0x345}, {0x1F94, 0x3B7},
|
||||
{0x1F94, 0x313}, {0x1F94, 0x301}, {0x1F94, 0x345}, {0x1F95, 0x3B7}, {0x1F95, 0x314}, {0x1F95, 0x301}, {0x1F95, 0x345}, {0x1F96, 0x3B7}, {0x1F96, 0x313}, {0x1F96, 0x342}, {0x1F96, 0x345},
|
||||
{0x1F97, 0x3B7}, {0x1F97, 0x314}, {0x1F97, 0x342}, {0x1F97, 0x345}, {0x1F98, 0x397}, {0x1F98, 0x313}, {0x1F98, 0x345}, {0x1F99, 0x397}, {0x1F99, 0x314}, {0x1F99, 0x345}, {0x1F9A, 0x397},
|
||||
{0x1F9A, 0x313}, {0x1F9A, 0x300}, {0x1F9A, 0x345}, {0x1F9B, 0x397}, {0x1F9B, 0x314}, {0x1F9B, 0x300}, {0x1F9B, 0x345}, {0x1F9C, 0x397}, {0x1F9C, 0x313}, {0x1F9C, 0x301}, {0x1F9C, 0x345},
|
||||
{0x1F9D, 0x397}, {0x1F9D, 0x314}, {0x1F9D, 0x301}, {0x1F9D, 0x345}, {0x1F9E, 0x397}, {0x1F9E, 0x313}, {0x1F9E, 0x342}, {0x1F9E, 0x345}, {0x1F9F, 0x397}, {0x1F9F, 0x314}, {0x1F9F, 0x342},
|
||||
{0x1F9F, 0x345}, {0x1FA0, 0x3C9}, {0x1FA0, 0x313}, {0x1FA0, 0x345}, {0x1FA1, 0x3C9}, {0x1FA1, 0x314}, {0x1FA1, 0x345}, {0x1FA2, 0x3C9}, {0x1FA2, 0x313}, {0x1FA2, 0x300}, {0x1FA2, 0x345},
|
||||
{0x1FA3, 0x3C9}, {0x1FA3, 0x314}, {0x1FA3, 0x300}, {0x1FA3, 0x345}, {0x1FA4, 0x3C9}, {0x1FA4, 0x313}, {0x1FA4, 0x301}, {0x1FA4, 0x345}, {0x1FA5, 0x3C9}, {0x1FA5, 0x314}, {0x1FA5, 0x301},
|
||||
{0x1FA5, 0x345}, {0x1FA6, 0x3C9}, {0x1FA6, 0x313}, {0x1FA6, 0x342}, {0x1FA6, 0x345}, {0x1FA7, 0x3C9}, {0x1FA7, 0x314}, {0x1FA7, 0x342}, {0x1FA7, 0x345}, {0x1FA8, 0x3A9}, {0x1FA8, 0x313},
|
||||
{0x1FA8, 0x345}, {0x1FA9, 0x3A9}, {0x1FA9, 0x314}, {0x1FA9, 0x345}, {0x1FAA, 0x3A9}, {0x1FAA, 0x313}, {0x1FAA, 0x300}, {0x1FAA, 0x345}, {0x1FAB, 0x3A9}, {0x1FAB, 0x314}, {0x1FAB, 0x300},
|
||||
{0x1FAB, 0x345}, {0x1FAC, 0x3A9}, {0x1FAC, 0x313}, {0x1FAC, 0x301}, {0x1FAC, 0x345}, {0x1FAD, 0x3A9}, {0x1FAD, 0x314}, {0x1FAD, 0x301}, {0x1FAD, 0x345}, {0x1FAE, 0x3A9}, {0x1FAE, 0x313},
|
||||
{0x1FAE, 0x342}, {0x1FAE, 0x345}, {0x1FAF, 0x3A9}, {0x1FAF, 0x314}, {0x1FAF, 0x342}, {0x1FAF, 0x345}, {0x1FB0, 0x3B1}, {0x1FB0, 0x306}, {0x1FB1, 0x3B1}, {0x1FB1, 0x304}, {0x1FB2, 0x3B1},
|
||||
{0x1FB2, 0x300}, {0x1FB2, 0x345}, {0x1FB3, 0x3B1}, {0x1FB3, 0x345}, {0x1FB4, 0x3B1}, {0x1FB4, 0x301}, {0x1FB4, 0x345}, {0x1FB6, 0x3B1}, {0x1FB6, 0x342}, {0x1FB7, 0x3B1}, {0x1FB7, 0x342},
|
||||
{0x1FB7, 0x345}, {0x1FB8, 0x391}, {0x1FB8, 0x306}, {0x1FB9, 0x391}, {0x1FB9, 0x304}, {0x1FBA, 0x391}, {0x1FBA, 0x300}, {0x1FBB, 0x391}, {0x1FBB, 0x301}, {0x1FBC, 0x391}, {0x1FBC, 0x345},
|
||||
{0x1FBE, 0x3B9}, {0x1FC1, 0xA8}, {0x1FC1, 0x342}, {0x1FC2, 0x3B7}, {0x1FC2, 0x300}, {0x1FC2, 0x345}, {0x1FC3, 0x3B7}, {0x1FC3, 0x345}, {0x1FC4, 0x3B7}, {0x1FC4, 0x301}, {0x1FC4, 0x345},
|
||||
{0x1FC6, 0x3B7}, {0x1FC6, 0x342}, {0x1FC7, 0x3B7}, {0x1FC7, 0x342}, {0x1FC7, 0x345}, {0x1FC8, 0x395}, {0x1FC8, 0x300}, {0x1FC9, 0x395}, {0x1FC9, 0x301}, {0x1FCA, 0x397}, {0x1FCA, 0x300},
|
||||
{0x1FCB, 0x397}, {0x1FCB, 0x301}, {0x1FCC, 0x397}, {0x1FCC, 0x345}, {0x1FCD, 0x1FBF}, {0x1FCD, 0x300}, {0x1FCE, 0x1FBF}, {0x1FCE, 0x301}, {0x1FCF, 0x1FBF}, {0x1FCF, 0x342}, {0x1FD0, 0x3B9},
|
||||
{0x1FD0, 0x306}, {0x1FD1, 0x3B9}, {0x1FD1, 0x304}, {0x1FD2, 0x3B9}, {0x1FD2, 0x308}, {0x1FD2, 0x300}, {0x1FD3, 0x3B9}, {0x1FD3, 0x308}, {0x1FD3, 0x301}, {0x1FD6, 0x3B9}, {0x1FD6, 0x342},
|
||||
{0x1FD7, 0x3B9}, {0x1FD7, 0x308}, {0x1FD7, 0x342}, {0x1FD8, 0x399}, {0x1FD8, 0x306}, {0x1FD9, 0x399}, {0x1FD9, 0x304}, {0x1FDA, 0x399}, {0x1FDA, 0x300}, {0x1FDB, 0x399}, {0x1FDB, 0x301},
|
||||
{0x1FDD, 0x1FFE}, {0x1FDD, 0x300}, {0x1FDE, 0x1FFE}, {0x1FDE, 0x301}, {0x1FDF, 0x1FFE}, {0x1FDF, 0x342}, {0x1FE0, 0x3C5}, {0x1FE0, 0x306}, {0x1FE1, 0x3C5}, {0x1FE1, 0x304}, {0x1FE2, 0x3C5},
|
||||
{0x1FE2, 0x308}, {0x1FE2, 0x300}, {0x1FE3, 0x3C5}, {0x1FE3, 0x308}, {0x1FE3, 0x301}, {0x1FE4, 0x3C1}, {0x1FE4, 0x313}, {0x1FE5, 0x3C1}, {0x1FE5, 0x314}, {0x1FE6, 0x3C5}, {0x1FE6, 0x342},
|
||||
{0x1FE7, 0x3C5}, {0x1FE7, 0x308}, {0x1FE7, 0x342}, {0x1FE8, 0x3A5}, {0x1FE8, 0x306}, {0x1FE9, 0x3A5}, {0x1FE9, 0x304}, {0x1FEA, 0x3A5}, {0x1FEA, 0x300}, {0x1FEB, 0x3A5}, {0x1FEB, 0x301},
|
||||
{0x1FEC, 0x3A1}, {0x1FEC, 0x314}, {0x1FED, 0xA8}, {0x1FED, 0x300}, {0x1FEE, 0xA8}, {0x1FEE, 0x301}, {0x1FEF, 0x60}, {0x1FF2, 0x3C9}, {0x1FF2, 0x300}, {0x1FF2, 0x345}, {0x1FF3, 0x3C9}, {0x1FF3, 0x345},
|
||||
{0x1FF4, 0x3C9}, {0x1FF4, 0x301}, {0x1FF4, 0x345}, {0x1FF6, 0x3C9}, {0x1FF6, 0x342}, {0x1FF7, 0x3C9}, {0x1FF7, 0x342}, {0x1FF7, 0x345}, {0x1FF8, 0x39F}, {0x1FF8, 0x300}, {0x1FF9, 0x39F},
|
||||
{0x1FF9, 0x301}, {0x1FFA, 0x3A9}, {0x1FFA, 0x300}, {0x1FFB, 0x3A9}, {0x1FFB, 0x301}, {0x1FFC, 0x3A9}, {0x1FFC, 0x345}, {0x1FFD, 0xB4}, {0x2000, 0x2002}, {0x2001, 0x2003}, {0x2126, 0x3A9},
|
||||
{0x212A, 0x4B}, {0x212B, 0x41}, {0x212B, 0x30A}, {0x219A, 0x2190}, {0x219A, 0x338}, {0x219B, 0x2192}, {0x219B, 0x338}, {0x21AE, 0x2194}, {0x21AE, 0x338}, {0x21CD, 0x21D0}, {0x21CD, 0x338},
|
||||
{0x21CE, 0x21D4}, {0x21CE, 0x338}, {0x21CF, 0x21D2}, {0x21CF, 0x338}, {0x2204, 0x2203}, {0x2204, 0x338}, {0x2209, 0x2208}, {0x2209, 0x338}, {0x220C, 0x220B}, {0x220C, 0x338}, {0x2224, 0x2223},
|
||||
{0x2224, 0x338}, {0x2226, 0x2225}, {0x2226, 0x338}, {0x2241, 0x223C}, {0x2241, 0x338}, {0x2244, 0x2243}, {0x2244, 0x338}, {0x2247, 0x2245}, {0x2247, 0x338}, {0x2249, 0x2248}, {0x2249, 0x338},
|
||||
{0x2260, 0x3D}, {0x2260, 0x338}, {0x2262, 0x2261}, {0x2262, 0x338}, {0x226D, 0x224D}, {0x226D, 0x338}, {0x226E, 0x3C}, {0x226E, 0x338}, {0x226F, 0x3E}, {0x226F, 0x338}, {0x2270, 0x2264},
|
||||
{0x2270, 0x338}, {0x2271, 0x2265}, {0x2271, 0x338}, {0x2274, 0x2272}, {0x2274, 0x338}, {0x2275, 0x2273}, {0x2275, 0x338}, {0x2278, 0x2276}, {0x2278, 0x338}, {0x2279, 0x2277}, {0x2279, 0x338},
|
||||
{0x2280, 0x227A}, {0x2280, 0x338}, {0x2281, 0x227B}, {0x2281, 0x338}, {0x2284, 0x2282}, {0x2284, 0x338}, {0x2285, 0x2283}, {0x2285, 0x338}, {0x2288, 0x2286}, {0x2288, 0x338}, {0x2289, 0x2287},
|
||||
{0x2289, 0x338}, {0x22AC, 0x22A2}, {0x22AC, 0x338}, {0x22AD, 0x22A8}, {0x22AD, 0x338}, {0x22AE, 0x22A9}, {0x22AE, 0x338}, {0x22AF, 0x22AB}, {0x22AF, 0x338}, {0x22E0, 0x227C}, {0x22E0, 0x338},
|
||||
{0x22E1, 0x227D}, {0x22E1, 0x338}, {0x22E2, 0x2291}, {0x22E2, 0x338}, {0x22E3, 0x2292}, {0x22E3, 0x338}, {0x22EA, 0x22B2}, {0x22EA, 0x338}, {0x22EB, 0x22B3}, {0x22EB, 0x338}, {0x22EC, 0x22B4},
|
||||
{0x22EC, 0x338}, {0x22ED, 0x22B5}, {0x22ED, 0x338}, {0x2329, 0x3008}, {0x232A, 0x3009}, {0x2ADC, 0x2ADD}, {0x2ADC, 0x338}, {0x304C, 0x304B}, {0x304C, 0x3099}, {0x304E, 0x304D}, {0x304E, 0x3099},
|
||||
{0x3050, 0x304F}, {0x3050, 0x3099}, {0x3052, 0x3051}, {0x3052, 0x3099}, {0x3054, 0x3053}, {0x3054, 0x3099}, {0x3056, 0x3055}, {0x3056, 0x3099}, {0x3058, 0x3057}, {0x3058, 0x3099}, {0x305A, 0x3059},
|
||||
{0x305A, 0x3099}, {0x305C, 0x305B}, {0x305C, 0x3099}, {0x305E, 0x305D}, {0x305E, 0x3099}, {0x3060, 0x305F}, {0x3060, 0x3099}, {0x3062, 0x3061}, {0x3062, 0x3099}, {0x3065, 0x3064}, {0x3065, 0x3099},
|
||||
{0x3067, 0x3066}, {0x3067, 0x3099}, {0x3069, 0x3068}, {0x3069, 0x3099}, {0x3070, 0x306F}, {0x3070, 0x3099}, {0x3071, 0x306F}, {0x3071, 0x309A}, {0x3073, 0x3072}, {0x3073, 0x3099}, {0x3074, 0x3072},
|
||||
{0x3074, 0x309A}, {0x3076, 0x3075}, {0x3076, 0x3099}, {0x3077, 0x3075}, {0x3077, 0x309A}, {0x3079, 0x3078}, {0x3079, 0x3099}, {0x307A, 0x3078}, {0x307A, 0x309A}, {0x307C, 0x307B}, {0x307C, 0x3099},
|
||||
{0x307D, 0x307B}, {0x307D, 0x309A}, {0x3094, 0x3046}, {0x3094, 0x3099}, {0x309E, 0x309D}, {0x309E, 0x3099}, {0x30AC, 0x30AB}, {0x30AC, 0x3099}, {0x30AE, 0x30AD}, {0x30AE, 0x3099}, {0x30B0, 0x30AF},
|
||||
{0x30B0, 0x3099}, {0x30B2, 0x30B1}, {0x30B2, 0x3099}, {0x30B4, 0x30B3}, {0x30B4, 0x3099}, {0x30B6, 0x30B5}, {0x30B6, 0x3099}, {0x30B8, 0x30B7}, {0x30B8, 0x3099}, {0x30BA, 0x30B9}, {0x30BA, 0x3099},
|
||||
{0x30BC, 0x30BB}, {0x30BC, 0x3099}, {0x30BE, 0x30BD}, {0x30BE, 0x3099}, {0x30C0, 0x30BF}, {0x30C0, 0x3099}, {0x30C2, 0x30C1}, {0x30C2, 0x3099}, {0x30C5, 0x30C4}, {0x30C5, 0x3099}, {0x30C7, 0x30C6},
|
||||
{0x30C7, 0x3099}, {0x30C9, 0x30C8}, {0x30C9, 0x3099}, {0x30D0, 0x30CF}, {0x30D0, 0x3099}, {0x30D1, 0x30CF}, {0x30D1, 0x309A}, {0x30D3, 0x30D2}, {0x30D3, 0x3099}, {0x30D4, 0x30D2}, {0x30D4, 0x309A},
|
||||
{0x30D6, 0x30D5}, {0x30D6, 0x3099}, {0x30D7, 0x30D5}, {0x30D7, 0x309A}, {0x30D9, 0x30D8}, {0x30D9, 0x3099}, {0x30DA, 0x30D8}, {0x30DA, 0x309A}, {0x30DC, 0x30DB}, {0x30DC, 0x3099}, {0x30DD, 0x30DB},
|
||||
{0x30DD, 0x309A}, {0x30F4, 0x30A6}, {0x30F4, 0x3099}, {0x30F7, 0x30EF}, {0x30F7, 0x3099}, {0x30F8, 0x30F0}, {0x30F8, 0x3099}, {0x30F9, 0x30F1}, {0x30F9, 0x3099}, {0x30FA, 0x30F2}, {0x30FA, 0x3099},
|
||||
{0x30FE, 0x30FD}, {0x30FE, 0x3099}, {0xF900, 0x8C48}, {0xF901, 0x66F4}, {0xF902, 0x8ECA}, {0xF903, 0x8CC8}, {0xF904, 0x6ED1}, {0xF905, 0x4E32}, {0xF906, 0x53E5}, {0xF907, 0x9F9C}, {0xF908, 0x9F9C},
|
||||
{0xF909, 0x5951}, {0xF90A, 0x91D1}, {0xF90B, 0x5587}, {0xF90C, 0x5948}, {0xF90D, 0x61F6}, {0xF90E, 0x7669}, {0xF90F, 0x7F85}, {0xF910, 0x863F}, {0xF911, 0x87BA}, {0xF912, 0x88F8}, {0xF913, 0x908F},
|
||||
{0xF914, 0x6A02}, {0xF915, 0x6D1B}, {0xF916, 0x70D9}, {0xF917, 0x73DE}, {0xF918, 0x843D}, {0xF919, 0x916A}, {0xF91A, 0x99F1}, {0xF91B, 0x4E82}, {0xF91C, 0x5375}, {0xF91D, 0x6B04}, {0xF91E, 0x721B},
|
||||
{0xF91F, 0x862D}, {0xF920, 0x9E1E}, {0xF921, 0x5D50}, {0xF922, 0x6FEB}, {0xF923, 0x85CD}, {0xF924, 0x8964}, {0xF925, 0x62C9}, {0xF926, 0x81D8}, {0xF927, 0x881F}, {0xF928, 0x5ECA}, {0xF929, 0x6717},
|
||||
{0xF92A, 0x6D6A}, {0xF92B, 0x72FC}, {0xF92C, 0x90CE}, {0xF92D, 0x4F86}, {0xF92E, 0x51B7}, {0xF92F, 0x52DE}, {0xF930, 0x64C4}, {0xF931, 0x6AD3}, {0xF932, 0x7210}, {0xF933, 0x76E7}, {0xF934, 0x8001},
|
||||
{0xF935, 0x8606}, {0xF936, 0x865C}, {0xF937, 0x8DEF}, {0xF938, 0x9732}, {0xF939, 0x9B6F}, {0xF93A, 0x9DFA}, {0xF93B, 0x788C}, {0xF93C, 0x797F}, {0xF93D, 0x7DA0}, {0xF93E, 0x83C9}, {0xF93F, 0x9304},
|
||||
{0xF940, 0x9E7F}, {0xF941, 0x8AD6}, {0xF942, 0x58DF}, {0xF943, 0x5F04}, {0xF944, 0x7C60}, {0xF945, 0x807E}, {0xF946, 0x7262}, {0xF947, 0x78CA}, {0xF948, 0x8CC2}, {0xF949, 0x96F7}, {0xF94A, 0x58D8},
|
||||
{0xF94B, 0x5C62}, {0xF94C, 0x6A13}, {0xF94D, 0x6DDA}, {0xF94E, 0x6F0F}, {0xF94F, 0x7D2F}, {0xF950, 0x7E37}, {0xF951, 0x964B}, {0xF952, 0x52D2}, {0xF953, 0x808B}, {0xF954, 0x51DC}, {0xF955, 0x51CC},
|
||||
{0xF956, 0x7A1C}, {0xF957, 0x7DBE}, {0xF958, 0x83F1}, {0xF959, 0x9675}, {0xF95A, 0x8B80}, {0xF95B, 0x62CF}, {0xF95C, 0x6A02}, {0xF95D, 0x8AFE}, {0xF95E, 0x4E39}, {0xF95F, 0x5BE7}, {0xF960, 0x6012},
|
||||
{0xF961, 0x7387}, {0xF962, 0x7570}, {0xF963, 0x5317}, {0xF964, 0x78FB}, {0xF965, 0x4FBF}, {0xF966, 0x5FA9}, {0xF967, 0x4E0D}, {0xF968, 0x6CCC}, {0xF969, 0x6578}, {0xF96A, 0x7D22}, {0xF96B, 0x53C3},
|
||||
{0xF96C, 0x585E}, {0xF96D, 0x7701}, {0xF96E, 0x8449}, {0xF96F, 0x8AAA}, {0xF970, 0x6BBA}, {0xF971, 0x8FB0}, {0xF972, 0x6C88}, {0xF973, 0x62FE}, {0xF974, 0x82E5}, {0xF975, 0x63A0}, {0xF976, 0x7565},
|
||||
{0xF977, 0x4EAE}, {0xF978, 0x5169}, {0xF979, 0x51C9}, {0xF97A, 0x6881}, {0xF97B, 0x7CE7}, {0xF97C, 0x826F}, {0xF97D, 0x8AD2}, {0xF97E, 0x91CF}, {0xF97F, 0x52F5}, {0xF980, 0x5442}, {0xF981, 0x5973},
|
||||
{0xF982, 0x5EEC}, {0xF983, 0x65C5}, {0xF984, 0x6FFE}, {0xF985, 0x792A}, {0xF986, 0x95AD}, {0xF987, 0x9A6A}, {0xF988, 0x9E97}, {0xF989, 0x9ECE}, {0xF98A, 0x529B}, {0xF98B, 0x66C6}, {0xF98C, 0x6B77},
|
||||
{0xF98D, 0x8F62}, {0xF98E, 0x5E74}, {0xF98F, 0x6190}, {0xF990, 0x6200}, {0xF991, 0x649A}, {0xF992, 0x6F23}, {0xF993, 0x7149}, {0xF994, 0x7489}, {0xF995, 0x79CA}, {0xF996, 0x7DF4}, {0xF997, 0x806F},
|
||||
{0xF998, 0x8F26}, {0xF999, 0x84EE}, {0xF99A, 0x9023}, {0xF99B, 0x934A}, {0xF99C, 0x5217}, {0xF99D, 0x52A3}, {0xF99E, 0x54BD}, {0xF99F, 0x70C8}, {0xF9A0, 0x88C2}, {0xF9A1, 0x8AAA}, {0xF9A2, 0x5EC9},
|
||||
{0xF9A3, 0x5FF5}, {0xF9A4, 0x637B}, {0xF9A5, 0x6BAE}, {0xF9A6, 0x7C3E}, {0xF9A7, 0x7375}, {0xF9A8, 0x4EE4}, {0xF9A9, 0x56F9}, {0xF9AA, 0x5BE7}, {0xF9AB, 0x5DBA}, {0xF9AC, 0x601C}, {0xF9AD, 0x73B2},
|
||||
{0xF9AE, 0x7469}, {0xF9AF, 0x7F9A}, {0xF9B0, 0x8046}, {0xF9B1, 0x9234}, {0xF9B2, 0x96F6}, {0xF9B3, 0x9748}, {0xF9B4, 0x9818}, {0xF9B5, 0x4F8B}, {0xF9B6, 0x79AE}, {0xF9B7, 0x91B4}, {0xF9B8, 0x96B8},
|
||||
{0xF9B9, 0x60E1}, {0xF9BA, 0x4E86}, {0xF9BB, 0x50DA}, {0xF9BC, 0x5BEE}, {0xF9BD, 0x5C3F}, {0xF9BE, 0x6599}, {0xF9BF, 0x6A02}, {0xF9C0, 0x71CE}, {0xF9C1, 0x7642}, {0xF9C2, 0x84FC}, {0xF9C3, 0x907C},
|
||||
{0xF9C4, 0x9F8D}, {0xF9C5, 0x6688}, {0xF9C6, 0x962E}, {0xF9C7, 0x5289}, {0xF9C8, 0x677B}, {0xF9C9, 0x67F3}, {0xF9CA, 0x6D41}, {0xF9CB, 0x6E9C}, {0xF9CC, 0x7409}, {0xF9CD, 0x7559}, {0xF9CE, 0x786B},
|
||||
{0xF9CF, 0x7D10}, {0xF9D0, 0x985E}, {0xF9D1, 0x516D}, {0xF9D2, 0x622E}, {0xF9D3, 0x9678}, {0xF9D4, 0x502B}, {0xF9D5, 0x5D19}, {0xF9D6, 0x6DEA}, {0xF9D7, 0x8F2A}, {0xF9D8, 0x5F8B}, {0xF9D9, 0x6144},
|
||||
{0xF9DA, 0x6817}, {0xF9DB, 0x7387}, {0xF9DC, 0x9686}, {0xF9DD, 0x5229}, {0xF9DE, 0x540F}, {0xF9DF, 0x5C65}, {0xF9E0, 0x6613}, {0xF9E1, 0x674E}, {0xF9E2, 0x68A8}, {0xF9E3, 0x6CE5}, {0xF9E4, 0x7406},
|
||||
{0xF9E5, 0x75E2}, {0xF9E6, 0x7F79}, {0xF9E7, 0x88CF}, {0xF9E8, 0x88E1}, {0xF9E9, 0x91CC}, {0xF9EA, 0x96E2}, {0xF9EB, 0x533F}, {0xF9EC, 0x6EBA}, {0xF9ED, 0x541D}, {0xF9EE, 0x71D0}, {0xF9EF, 0x7498},
|
||||
{0xF9F0, 0x85FA}, {0xF9F1, 0x96A3}, {0xF9F2, 0x9C57}, {0xF9F3, 0x9E9F}, {0xF9F4, 0x6797}, {0xF9F5, 0x6DCB}, {0xF9F6, 0x81E8}, {0xF9F7, 0x7ACB}, {0xF9F8, 0x7B20}, {0xF9F9, 0x7C92}, {0xF9FA, 0x72C0},
|
||||
{0xF9FB, 0x7099}, {0xF9FC, 0x8B58}, {0xF9FD, 0x4EC0}, {0xF9FE, 0x8336}, {0xF9FF, 0x523A}, {0xFA00, 0x5207}, {0xFA01, 0x5EA6}, {0xFA02, 0x62D3}, {0xFA03, 0x7CD6}, {0xFA04, 0x5B85}, {0xFA05, 0x6D1E},
|
||||
{0xFA06, 0x66B4}, {0xFA07, 0x8F3B}, {0xFA08, 0x884C}, {0xFA09, 0x964D}, {0xFA0A, 0x898B}, {0xFA0B, 0x5ED3}, {0xFA0C, 0x5140}, {0xFA0D, 0x55C0}, {0xFA10, 0x585A}, {0xFA12, 0x6674}, {0xFA15, 0x51DE},
|
||||
{0xFA16, 0x732A}, {0xFA17, 0x76CA}, {0xFA18, 0x793C}, {0xFA19, 0x795E}, {0xFA1A, 0x7965}, {0xFA1B, 0x798F}, {0xFA1C, 0x9756}, {0xFA1D, 0x7CBE}, {0xFA1E, 0x7FBD}, {0xFA20, 0x8612}, {0xFA22, 0x8AF8},
|
||||
{0xFA25, 0x9038}, {0xFA26, 0x90FD}, {0xFA2A, 0x98EF}, {0xFA2B, 0x98FC}, {0xFA2C, 0x9928}, {0xFA2D, 0x9DB4}, {0xFA2E, 0x90DE}, {0xFA2F, 0x96B7}, {0xFA30, 0x4FAE}, {0xFA31, 0x50E7}, {0xFA32, 0x514D},
|
||||
{0xFA33, 0x52C9}, {0xFA34, 0x52E4}, {0xFA35, 0x5351}, {0xFA36, 0x559D}, {0xFA37, 0x5606}, {0xFA38, 0x5668}, {0xFA39, 0x5840}, {0xFA3A, 0x58A8}, {0xFA3B, 0x5C64}, {0xFA3C, 0x5C6E}, {0xFA3D, 0x6094},
|
||||
{0xFA3E, 0x6168}, {0xFA3F, 0x618E}, {0xFA40, 0x61F2}, {0xFA41, 0x654F}, {0xFA42, 0x65E2}, {0xFA43, 0x6691}, {0xFA44, 0x6885}, {0xFA45, 0x6D77}, {0xFA46, 0x6E1A}, {0xFA47, 0x6F22}, {0xFA48, 0x716E},
|
||||
{0xFA49, 0x722B}, {0xFA4A, 0x7422}, {0xFA4B, 0x7891}, {0xFA4C, 0x793E}, {0xFA4D, 0x7949}, {0xFA4E, 0x7948}, {0xFA4F, 0x7950}, {0xFA50, 0x7956}, {0xFA51, 0x795D}, {0xFA52, 0x798D}, {0xFA53, 0x798E},
|
||||
{0xFA54, 0x7A40}, {0xFA55, 0x7A81}, {0xFA56, 0x7BC0}, {0xFA57, 0x7DF4}, {0xFA58, 0x7E09}, {0xFA59, 0x7E41}, {0xFA5A, 0x7F72}, {0xFA5B, 0x8005}, {0xFA5C, 0x81ED}, {0xFA5D, 0x8279}, {0xFA5E, 0x8279},
|
||||
{0xFA5F, 0x8457}, {0xFA60, 0x8910}, {0xFA61, 0x8996}, {0xFA62, 0x8B01}, {0xFA63, 0x8B39}, {0xFA64, 0x8CD3}, {0xFA65, 0x8D08}, {0xFA66, 0x8FB6}, {0xFA67, 0x9038}, {0xFA68, 0x96E3}, {0xFA69, 0x97FF},
|
||||
{0xFA6A, 0x983B}, {0xFA6B, 0x6075}, {0xFA6C, 0x242EE}, {0xFA6D, 0x8218}, {0xFA70, 0x4E26}, {0xFA71, 0x51B5}, {0xFA72, 0x5168}, {0xFA73, 0x4F80}, {0xFA74, 0x5145}, {0xFA75, 0x5180}, {0xFA76, 0x52C7},
|
||||
{0xFA77, 0x52FA}, {0xFA78, 0x559D}, {0xFA79, 0x5555}, {0xFA7A, 0x5599}, {0xFA7B, 0x55E2}, {0xFA7C, 0x585A}, {0xFA7D, 0x58B3}, {0xFA7E, 0x5944}, {0xFA7F, 0x5954}, {0xFA80, 0x5A62}, {0xFA81, 0x5B28},
|
||||
{0xFA82, 0x5ED2}, {0xFA83, 0x5ED9}, {0xFA84, 0x5F69}, {0xFA85, 0x5FAD}, {0xFA86, 0x60D8}, {0xFA87, 0x614E}, {0xFA88, 0x6108}, {0xFA89, 0x618E}, {0xFA8A, 0x6160}, {0xFA8B, 0x61F2}, {0xFA8C, 0x6234},
|
||||
{0xFA8D, 0x63C4}, {0xFA8E, 0x641C}, {0xFA8F, 0x6452}, {0xFA90, 0x6556}, {0xFA91, 0x6674}, {0xFA92, 0x6717}, {0xFA93, 0x671B}, {0xFA94, 0x6756}, {0xFA95, 0x6B79}, {0xFA96, 0x6BBA}, {0xFA97, 0x6D41},
|
||||
{0xFA98, 0x6EDB}, {0xFA99, 0x6ECB}, {0xFA9A, 0x6F22}, {0xFA9B, 0x701E}, {0xFA9C, 0x716E}, {0xFA9D, 0x77A7}, {0xFA9E, 0x7235}, {0xFA9F, 0x72AF}, {0xFAA0, 0x732A}, {0xFAA1, 0x7471}, {0xFAA2, 0x7506},
|
||||
{0xFAA3, 0x753B}, {0xFAA4, 0x761D}, {0xFAA5, 0x761F}, {0xFAA6, 0x76CA}, {0xFAA7, 0x76DB}, {0xFAA8, 0x76F4}, {0xFAA9, 0x774A}, {0xFAAA, 0x7740}, {0xFAAB, 0x78CC}, {0xFAAC, 0x7AB1}, {0xFAAD, 0x7BC0},
|
||||
{0xFAAE, 0x7C7B}, {0xFAAF, 0x7D5B}, {0xFAB0, 0x7DF4}, {0xFAB1, 0x7F3E}, {0xFAB2, 0x8005}, {0xFAB3, 0x8352}, {0xFAB4, 0x83EF}, {0xFAB5, 0x8779}, {0xFAB6, 0x8941}, {0xFAB7, 0x8986}, {0xFAB8, 0x8996},
|
||||
{0xFAB9, 0x8ABF}, {0xFABA, 0x8AF8}, {0xFABB, 0x8ACB}, {0xFABC, 0x8B01}, {0xFABD, 0x8AFE}, {0xFABE, 0x8AED}, {0xFABF, 0x8B39}, {0xFAC0, 0x8B8A}, {0xFAC1, 0x8D08}, {0xFAC2, 0x8F38}, {0xFAC3, 0x9072},
|
||||
{0xFAC4, 0x9199}, {0xFAC5, 0x9276}, {0xFAC6, 0x967C}, {0xFAC7, 0x96E3}, {0xFAC8, 0x9756}, {0xFAC9, 0x97DB}, {0xFACA, 0x97FF}, {0xFACB, 0x980B}, {0xFACC, 0x983B}, {0xFACD, 0x9B12}, {0xFACE, 0x9F9C},
|
||||
{0xFACF, 0x2284A}, {0xFAD0, 0x22844}, {0xFAD1, 0x233D5}, {0xFAD2, 0x3B9D}, {0xFAD3, 0x4018}, {0xFAD4, 0x4039}, {0xFAD5, 0x25249}, {0xFAD6, 0x25CD0}, {0xFAD7, 0x27ED3}, {0xFAD8, 0x9F43},
|
||||
{0xFAD9, 0x9F8E}, {0xFB1D, 0x5D9}, {0xFB1D, 0x5B4}, {0xFB1F, 0x5F2}, {0xFB1F, 0x5B7}, {0xFB2A, 0x5E9}, {0xFB2A, 0x5C1}, {0xFB2B, 0x5E9}, {0xFB2B, 0x5C2}, {0xFB2C, 0x5E9}, {0xFB2C, 0x5BC},
|
||||
{0xFB2C, 0x5C1}, {0xFB2D, 0x5E9}, {0xFB2D, 0x5BC}, {0xFB2D, 0x5C2}, {0xFB2E, 0x5D0}, {0xFB2E, 0x5B7}, {0xFB2F, 0x5D0}, {0xFB2F, 0x5B8}, {0xFB30, 0x5D0}, {0xFB30, 0x5BC}, {0xFB31, 0x5D1},
|
||||
{0xFB31, 0x5BC}, {0xFB32, 0x5D2}, {0xFB32, 0x5BC}, {0xFB33, 0x5D3}, {0xFB33, 0x5BC}, {0xFB34, 0x5D4}, {0xFB34, 0x5BC}, {0xFB35, 0x5D5}, {0xFB35, 0x5BC}, {0xFB36, 0x5D6}, {0xFB36, 0x5BC},
|
||||
{0xFB38, 0x5D8}, {0xFB38, 0x5BC}, {0xFB39, 0x5D9}, {0xFB39, 0x5BC}, {0xFB3A, 0x5DA}, {0xFB3A, 0x5BC}, {0xFB3B, 0x5DB}, {0xFB3B, 0x5BC}, {0xFB3C, 0x5DC}, {0xFB3C, 0x5BC}, {0xFB3E, 0x5DE},
|
||||
{0xFB3E, 0x5BC}, {0xFB40, 0x5E0}, {0xFB40, 0x5BC}, {0xFB41, 0x5E1}, {0xFB41, 0x5BC}, {0xFB43, 0x5E3}, {0xFB43, 0x5BC}, {0xFB44, 0x5E4}, {0xFB44, 0x5BC}, {0xFB46, 0x5E6}, {0xFB46, 0x5BC},
|
||||
{0xFB47, 0x5E7}, {0xFB47, 0x5BC}, {0xFB48, 0x5E8}, {0xFB48, 0x5BC}, {0xFB49, 0x5E9}, {0xFB49, 0x5BC}, {0xFB4A, 0x5EA}, {0xFB4A, 0x5BC}, {0xFB4B, 0x5D5}, {0xFB4B, 0x5B9}, {0xFB4C, 0x5D1},
|
||||
{0xFB4C, 0x5BF}, {0xFB4D, 0x5DB}, {0xFB4D, 0x5BF}, {0xFB4E, 0x5E4}, {0xFB4E, 0x5BF}, {0x1109A, 0x11099}, {0x1109A, 0x110BA}, {0x1109C, 0x1109B}, {0x1109C, 0x110BA}, {0x110AB, 0x110A5},
|
||||
{0x110AB, 0x110BA}, {0x1112E, 0x11131}, {0x1112E, 0x11127}, {0x1112F, 0x11132}, {0x1112F, 0x11127}, {0x1134B, 0x11347}, {0x1134B, 0x1133E}, {0x1134C, 0x11347}, {0x1134C, 0x11357}, {0x114BB, 0x114B9},
|
||||
{0x114BB, 0x114BA}, {0x114BC, 0x114B9}, {0x114BC, 0x114B0}, {0x114BE, 0x114B9}, {0x114BE, 0x114BD}, {0x115BA, 0x115B8}, {0x115BA, 0x115AF}, {0x115BB, 0x115B9}, {0x115BB, 0x115AF}, {0x1D15E, 0x1D157},
|
||||
{0x1D15E, 0x1D165}, {0x1D15F, 0x1D158}, {0x1D15F, 0x1D165}, {0x1D160, 0x1D158}, {0x1D160, 0x1D165}, {0x1D160, 0x1D16E}, {0x1D161, 0x1D158}, {0x1D161, 0x1D165}, {0x1D161, 0x1D16F}, {0x1D162, 0x1D158},
|
||||
{0x1D162, 0x1D165}, {0x1D162, 0x1D170}, {0x1D163, 0x1D158}, {0x1D163, 0x1D165}, {0x1D163, 0x1D171}, {0x1D164, 0x1D158}, {0x1D164, 0x1D165}, {0x1D164, 0x1D172}, {0x1D1BB, 0x1D1B9}, {0x1D1BB, 0x1D165},
|
||||
{0x1D1BC, 0x1D1BA}, {0x1D1BC, 0x1D165}, {0x1D1BD, 0x1D1B9}, {0x1D1BD, 0x1D165}, {0x1D1BD, 0x1D16E}, {0x1D1BE, 0x1D1BA}, {0x1D1BE, 0x1D165}, {0x1D1BE, 0x1D16E}, {0x1D1BF, 0x1D1B9}, {0x1D1BF, 0x1D165},
|
||||
{0x1D1BF, 0x1D16F}, {0x1D1C0, 0x1D1BA}, {0x1D1C0, 0x1D165}, {0x1D1C0, 0x1D16F}, {0x2F800, 0x4E3D}, {0x2F801, 0x4E38}, {0x2F802, 0x4E41}, {0x2F803, 0x20122}, {0x2F804, 0x4F60}, {0x2F805, 0x4FAE},
|
||||
{0x2F806, 0x4FBB}, {0x2F807, 0x5002}, {0x2F808, 0x507A}, {0x2F809, 0x5099}, {0x2F80A, 0x50E7}, {0x2F80B, 0x50CF}, {0x2F80C, 0x349E}, {0x2F80D, 0x2063A}, {0x2F80E, 0x514D}, {0x2F80F, 0x5154},
|
||||
{0x2F810, 0x5164}, {0x2F811, 0x5177}, {0x2F812, 0x2051C}, {0x2F813, 0x34B9}, {0x2F814, 0x5167}, {0x2F815, 0x518D}, {0x2F816, 0x2054B}, {0x2F817, 0x5197}, {0x2F818, 0x51A4}, {0x2F819, 0x4ECC},
|
||||
{0x2F81A, 0x51AC}, {0x2F81B, 0x51B5}, {0x2F81C, 0x291DF}, {0x2F81D, 0x51F5}, {0x2F81E, 0x5203}, {0x2F81F, 0x34DF}, {0x2F820, 0x523B}, {0x2F821, 0x5246}, {0x2F822, 0x5272}, {0x2F823, 0x5277},
|
||||
{0x2F824, 0x3515}, {0x2F825, 0x52C7}, {0x2F826, 0x52C9}, {0x2F827, 0x52E4}, {0x2F828, 0x52FA}, {0x2F829, 0x5305}, {0x2F82A, 0x5306}, {0x2F82B, 0x5317}, {0x2F82C, 0x5349}, {0x2F82D, 0x5351},
|
||||
{0x2F82E, 0x535A}, {0x2F82F, 0x5373}, {0x2F830, 0x537D}, {0x2F831, 0x537F}, {0x2F832, 0x537F}, {0x2F833, 0x537F}, {0x2F834, 0x20A2C}, {0x2F835, 0x7070}, {0x2F836, 0x53CA}, {0x2F837, 0x53DF},
|
||||
{0x2F838, 0x20B63}, {0x2F839, 0x53EB}, {0x2F83A, 0x53F1}, {0x2F83B, 0x5406}, {0x2F83C, 0x549E}, {0x2F83D, 0x5438}, {0x2F83E, 0x5448}, {0x2F83F, 0x5468}, {0x2F840, 0x54A2}, {0x2F841, 0x54F6},
|
||||
{0x2F842, 0x5510}, {0x2F843, 0x5553}, {0x2F844, 0x5563}, {0x2F845, 0x5584}, {0x2F846, 0x5584}, {0x2F847, 0x5599}, {0x2F848, 0x55AB}, {0x2F849, 0x55B3}, {0x2F84A, 0x55C2}, {0x2F84B, 0x5716},
|
||||
{0x2F84C, 0x5606}, {0x2F84D, 0x5717}, {0x2F84E, 0x5651}, {0x2F84F, 0x5674}, {0x2F850, 0x5207}, {0x2F851, 0x58EE}, {0x2F852, 0x57CE}, {0x2F853, 0x57F4}, {0x2F854, 0x580D}, {0x2F855, 0x578B},
|
||||
{0x2F856, 0x5832}, {0x2F857, 0x5831}, {0x2F858, 0x58AC}, {0x2F859, 0x214E4}, {0x2F85A, 0x58F2}, {0x2F85B, 0x58F7}, {0x2F85C, 0x5906}, {0x2F85D, 0x591A}, {0x2F85E, 0x5922}, {0x2F85F, 0x5962},
|
||||
{0x2F860, 0x216A8}, {0x2F861, 0x216EA}, {0x2F862, 0x59EC}, {0x2F863, 0x5A1B}, {0x2F864, 0x5A27}, {0x2F865, 0x59D8}, {0x2F866, 0x5A66}, {0x2F867, 0x36EE}, {0x2F868, 0x36FC}, {0x2F869, 0x5B08},
|
||||
{0x2F86A, 0x5B3E}, {0x2F86B, 0x5B3E}, {0x2F86C, 0x219C8}, {0x2F86D, 0x5BC3}, {0x2F86E, 0x5BD8}, {0x2F86F, 0x5BE7}, {0x2F870, 0x5BF3}, {0x2F871, 0x21B18}, {0x2F872, 0x5BFF}, {0x2F873, 0x5C06},
|
||||
{0x2F874, 0x5F53}, {0x2F875, 0x5C22}, {0x2F876, 0x3781}, {0x2F877, 0x5C60}, {0x2F878, 0x5C6E}, {0x2F879, 0x5CC0}, {0x2F87A, 0x5C8D}, {0x2F87B, 0x21DE4}, {0x2F87C, 0x5D43}, {0x2F87D, 0x21DE6},
|
||||
{0x2F87E, 0x5D6E}, {0x2F87F, 0x5D6B}, {0x2F880, 0x5D7C}, {0x2F881, 0x5DE1}, {0x2F882, 0x5DE2}, {0x2F883, 0x382F}, {0x2F884, 0x5DFD}, {0x2F885, 0x5E28}, {0x2F886, 0x5E3D}, {0x2F887, 0x5E69},
|
||||
{0x2F888, 0x3862}, {0x2F889, 0x22183}, {0x2F88A, 0x387C}, {0x2F88B, 0x5EB0}, {0x2F88C, 0x5EB3}, {0x2F88D, 0x5EB6}, {0x2F88E, 0x5ECA}, {0x2F88F, 0x2A392}, {0x2F890, 0x5EFE}, {0x2F891, 0x22331},
|
||||
{0x2F892, 0x22331}, {0x2F893, 0x8201}, {0x2F894, 0x5F22}, {0x2F895, 0x5F22}, {0x2F896, 0x38C7}, {0x2F897, 0x232B8}, {0x2F898, 0x261DA}, {0x2F899, 0x5F62}, {0x2F89A, 0x5F6B}, {0x2F89B, 0x38E3},
|
||||
{0x2F89C, 0x5F9A}, {0x2F89D, 0x5FCD}, {0x2F89E, 0x5FD7}, {0x2F89F, 0x5FF9}, {0x2F8A0, 0x6081}, {0x2F8A1, 0x393A}, {0x2F8A2, 0x391C}, {0x2F8A3, 0x6094}, {0x2F8A4, 0x226D4}, {0x2F8A5, 0x60C7},
|
||||
{0x2F8A6, 0x6148}, {0x2F8A7, 0x614C}, {0x2F8A8, 0x614E}, {0x2F8A9, 0x614C}, {0x2F8AA, 0x617A}, {0x2F8AB, 0x618E}, {0x2F8AC, 0x61B2}, {0x2F8AD, 0x61A4}, {0x2F8AE, 0x61AF}, {0x2F8AF, 0x61DE},
|
||||
{0x2F8B0, 0x61F2}, {0x2F8B1, 0x61F6}, {0x2F8B2, 0x6210}, {0x2F8B3, 0x621B}, {0x2F8B4, 0x625D}, {0x2F8B5, 0x62B1}, {0x2F8B6, 0x62D4}, {0x2F8B7, 0x6350}, {0x2F8B8, 0x22B0C}, {0x2F8B9, 0x633D},
|
||||
{0x2F8BA, 0x62FC}, {0x2F8BB, 0x6368}, {0x2F8BC, 0x6383}, {0x2F8BD, 0x63E4}, {0x2F8BE, 0x22BF1}, {0x2F8BF, 0x6422}, {0x2F8C0, 0x63C5}, {0x2F8C1, 0x63A9}, {0x2F8C2, 0x3A2E}, {0x2F8C3, 0x6469},
|
||||
{0x2F8C4, 0x647E}, {0x2F8C5, 0x649D}, {0x2F8C6, 0x6477}, {0x2F8C7, 0x3A6C}, {0x2F8C8, 0x654F}, {0x2F8C9, 0x656C}, {0x2F8CA, 0x2300A}, {0x2F8CB, 0x65E3}, {0x2F8CC, 0x66F8}, {0x2F8CD, 0x6649},
|
||||
{0x2F8CE, 0x3B19}, {0x2F8CF, 0x6691}, {0x2F8D0, 0x3B08}, {0x2F8D1, 0x3AE4}, {0x2F8D2, 0x5192}, {0x2F8D3, 0x5195}, {0x2F8D4, 0x6700}, {0x2F8D5, 0x669C}, {0x2F8D6, 0x80AD}, {0x2F8D7, 0x43D9},
|
||||
{0x2F8D8, 0x6717}, {0x2F8D9, 0x671B}, {0x2F8DA, 0x6721}, {0x2F8DB, 0x675E}, {0x2F8DC, 0x6753}, {0x2F8DD, 0x233C3}, {0x2F8DE, 0x3B49}, {0x2F8DF, 0x67FA}, {0x2F8E0, 0x6785}, {0x2F8E1, 0x6852},
|
||||
{0x2F8E2, 0x6885}, {0x2F8E3, 0x2346D}, {0x2F8E4, 0x688E}, {0x2F8E5, 0x681F}, {0x2F8E6, 0x6914}, {0x2F8E7, 0x3B9D}, {0x2F8E8, 0x6942}, {0x2F8E9, 0x69A3}, {0x2F8EA, 0x69EA}, {0x2F8EB, 0x6AA8},
|
||||
{0x2F8EC, 0x236A3}, {0x2F8ED, 0x6ADB}, {0x2F8EE, 0x3C18}, {0x2F8EF, 0x6B21}, {0x2F8F0, 0x238A7}, {0x2F8F1, 0x6B54}, {0x2F8F2, 0x3C4E}, {0x2F8F3, 0x6B72}, {0x2F8F4, 0x6B9F}, {0x2F8F5, 0x6BBA},
|
||||
{0x2F8F6, 0x6BBB}, {0x2F8F7, 0x23A8D}, {0x2F8F8, 0x21D0B}, {0x2F8F9, 0x23AFA}, {0x2F8FA, 0x6C4E}, {0x2F8FB, 0x23CBC}, {0x2F8FC, 0x6CBF}, {0x2F8FD, 0x6CCD}, {0x2F8FE, 0x6C67}, {0x2F8FF, 0x6D16},
|
||||
{0x2F900, 0x6D3E}, {0x2F901, 0x6D77}, {0x2F902, 0x6D41}, {0x2F903, 0x6D69}, {0x2F904, 0x6D78}, {0x2F905, 0x6D85}, {0x2F906, 0x23D1E}, {0x2F907, 0x6D34}, {0x2F908, 0x6E2F}, {0x2F909, 0x6E6E},
|
||||
{0x2F90A, 0x3D33}, {0x2F90B, 0x6ECB}, {0x2F90C, 0x6EC7}, {0x2F90D, 0x23ED1}, {0x2F90E, 0x6DF9}, {0x2F90F, 0x6F6E}, {0x2F910, 0x23F5E}, {0x2F911, 0x23F8E}, {0x2F912, 0x6FC6}, {0x2F913, 0x7039},
|
||||
{0x2F914, 0x701E}, {0x2F915, 0x701B}, {0x2F916, 0x3D96}, {0x2F917, 0x704A}, {0x2F918, 0x707D}, {0x2F919, 0x7077}, {0x2F91A, 0x70AD}, {0x2F91B, 0x20525}, {0x2F91C, 0x7145}, {0x2F91D, 0x24263},
|
||||
{0x2F91E, 0x719C}, {0x2F91F, 0x243AB}, {0x2F920, 0x7228}, {0x2F921, 0x7235}, {0x2F922, 0x7250}, {0x2F923, 0x24608}, {0x2F924, 0x7280}, {0x2F925, 0x7295}, {0x2F926, 0x24735}, {0x2F927, 0x24814},
|
||||
{0x2F928, 0x737A}, {0x2F929, 0x738B}, {0x2F92A, 0x3EAC}, {0x2F92B, 0x73A5}, {0x2F92C, 0x3EB8}, {0x2F92D, 0x3EB8}, {0x2F92E, 0x7447}, {0x2F92F, 0x745C}, {0x2F930, 0x7471}, {0x2F931, 0x7485},
|
||||
{0x2F932, 0x74CA}, {0x2F933, 0x3F1B}, {0x2F934, 0x7524}, {0x2F935, 0x24C36}, {0x2F936, 0x753E}, {0x2F937, 0x24C92}, {0x2F938, 0x7570}, {0x2F939, 0x2219F}, {0x2F93A, 0x7610}, {0x2F93B, 0x24FA1},
|
||||
{0x2F93C, 0x24FB8}, {0x2F93D, 0x25044}, {0x2F93E, 0x3FFC}, {0x2F93F, 0x4008}, {0x2F940, 0x76F4}, {0x2F941, 0x250F3}, {0x2F942, 0x250F2}, {0x2F943, 0x25119}, {0x2F944, 0x25133}, {0x2F945, 0x771E},
|
||||
{0x2F946, 0x771F}, {0x2F947, 0x771F}, {0x2F948, 0x774A}, {0x2F949, 0x4039}, {0x2F94A, 0x778B}, {0x2F94B, 0x4046}, {0x2F94C, 0x4096}, {0x2F94D, 0x2541D}, {0x2F94E, 0x784E}, {0x2F94F, 0x788C},
|
||||
{0x2F950, 0x78CC}, {0x2F951, 0x40E3}, {0x2F952, 0x25626}, {0x2F953, 0x7956}, {0x2F954, 0x2569A}, {0x2F955, 0x256C5}, {0x2F956, 0x798F}, {0x2F957, 0x79EB}, {0x2F958, 0x412F}, {0x2F959, 0x7A40},
|
||||
{0x2F95A, 0x7A4A}, {0x2F95B, 0x7A4F}, {0x2F95C, 0x2597C}, {0x2F95D, 0x25AA7}, {0x2F95E, 0x25AA7}, {0x2F95F, 0x7AEE}, {0x2F960, 0x4202}, {0x2F961, 0x25BAB}, {0x2F962, 0x7BC6}, {0x2F963, 0x7BC9},
|
||||
{0x2F964, 0x4227}, {0x2F965, 0x25C80}, {0x2F966, 0x7CD2}, {0x2F967, 0x42A0}, {0x2F968, 0x7CE8}, {0x2F969, 0x7CE3}, {0x2F96A, 0x7D00}, {0x2F96B, 0x25F86}, {0x2F96C, 0x7D63}, {0x2F96D, 0x4301},
|
||||
{0x2F96E, 0x7DC7}, {0x2F96F, 0x7E02}, {0x2F970, 0x7E45}, {0x2F971, 0x4334}, {0x2F972, 0x26228}, {0x2F973, 0x26247}, {0x2F974, 0x4359}, {0x2F975, 0x262D9}, {0x2F976, 0x7F7A}, {0x2F977, 0x2633E},
|
||||
{0x2F978, 0x7F95}, {0x2F979, 0x7FFA}, {0x2F97A, 0x8005}, {0x2F97B, 0x264DA}, {0x2F97C, 0x26523}, {0x2F97D, 0x8060}, {0x2F97E, 0x265A8}, {0x2F97F, 0x8070}, {0x2F980, 0x2335F}, {0x2F981, 0x43D5},
|
||||
{0x2F982, 0x80B2}, {0x2F983, 0x8103}, {0x2F984, 0x440B}, {0x2F985, 0x813E}, {0x2F986, 0x5AB5}, {0x2F987, 0x267A7}, {0x2F988, 0x267B5}, {0x2F989, 0x23393}, {0x2F98A, 0x2339C}, {0x2F98B, 0x8201},
|
||||
{0x2F98C, 0x8204}, {0x2F98D, 0x8F9E}, {0x2F98E, 0x446B}, {0x2F98F, 0x8291}, {0x2F990, 0x828B}, {0x2F991, 0x829D}, {0x2F992, 0x52B3}, {0x2F993, 0x82B1}, {0x2F994, 0x82B3}, {0x2F995, 0x82BD},
|
||||
{0x2F996, 0x82E6}, {0x2F997, 0x26B3C}, {0x2F998, 0x82E5}, {0x2F999, 0x831D}, {0x2F99A, 0x8363}, {0x2F99B, 0x83AD}, {0x2F99C, 0x8323}, {0x2F99D, 0x83BD}, {0x2F99E, 0x83E7}, {0x2F99F, 0x8457},
|
||||
{0x2F9A0, 0x8353}, {0x2F9A1, 0x83CA}, {0x2F9A2, 0x83CC}, {0x2F9A3, 0x83DC}, {0x2F9A4, 0x26C36}, {0x2F9A5, 0x26D6B}, {0x2F9A6, 0x26CD5}, {0x2F9A7, 0x452B}, {0x2F9A8, 0x84F1}, {0x2F9A9, 0x84F3},
|
||||
{0x2F9AA, 0x8516}, {0x2F9AB, 0x273CA}, {0x2F9AC, 0x8564}, {0x2F9AD, 0x26F2C}, {0x2F9AE, 0x455D}, {0x2F9AF, 0x4561}, {0x2F9B0, 0x26FB1}, {0x2F9B1, 0x270D2}, {0x2F9B2, 0x456B}, {0x2F9B3, 0x8650},
|
||||
{0x2F9B4, 0x865C}, {0x2F9B5, 0x8667}, {0x2F9B6, 0x8669}, {0x2F9B7, 0x86A9}, {0x2F9B8, 0x8688}, {0x2F9B9, 0x870E}, {0x2F9BA, 0x86E2}, {0x2F9BB, 0x8779}, {0x2F9BC, 0x8728}, {0x2F9BD, 0x876B},
|
||||
{0x2F9BE, 0x8786}, {0x2F9BF, 0x45D7}, {0x2F9C0, 0x87E1}, {0x2F9C1, 0x8801}, {0x2F9C2, 0x45F9}, {0x2F9C3, 0x8860}, {0x2F9C4, 0x8863}, {0x2F9C5, 0x27667}, {0x2F9C6, 0x88D7}, {0x2F9C7, 0x88DE},
|
||||
{0x2F9C8, 0x4635}, {0x2F9C9, 0x88FA}, {0x2F9CA, 0x34BB}, {0x2F9CB, 0x278AE}, {0x2F9CC, 0x27966}, {0x2F9CD, 0x46BE}, {0x2F9CE, 0x46C7}, {0x2F9CF, 0x8AA0}, {0x2F9D0, 0x8AED}, {0x2F9D1, 0x8B8A},
|
||||
{0x2F9D2, 0x8C55}, {0x2F9D3, 0x27CA8}, {0x2F9D4, 0x8CAB}, {0x2F9D5, 0x8CC1}, {0x2F9D6, 0x8D1B}, {0x2F9D7, 0x8D77}, {0x2F9D8, 0x27F2F}, {0x2F9D9, 0x20804}, {0x2F9DA, 0x8DCB}, {0x2F9DB, 0x8DBC},
|
||||
{0x2F9DC, 0x8DF0}, {0x2F9DD, 0x208DE}, {0x2F9DE, 0x8ED4}, {0x2F9DF, 0x8F38}, {0x2F9E0, 0x285D2}, {0x2F9E1, 0x285ED}, {0x2F9E2, 0x9094}, {0x2F9E3, 0x90F1}, {0x2F9E4, 0x9111}, {0x2F9E5, 0x2872E},
|
||||
{0x2F9E6, 0x911B}, {0x2F9E7, 0x9238}, {0x2F9E8, 0x92D7}, {0x2F9E9, 0x92D8}, {0x2F9EA, 0x927C}, {0x2F9EB, 0x93F9}, {0x2F9EC, 0x9415}, {0x2F9ED, 0x28BFA}, {0x2F9EE, 0x958B}, {0x2F9EF, 0x4995},
|
||||
{0x2F9F0, 0x95B7}, {0x2F9F1, 0x28D77}, {0x2F9F2, 0x49E6}, {0x2F9F3, 0x96C3}, {0x2F9F4, 0x5DB2}, {0x2F9F5, 0x9723}, {0x2F9F6, 0x29145}, {0x2F9F7, 0x2921A}, {0x2F9F8, 0x4A6E}, {0x2F9F9, 0x4A76},
|
||||
{0x2F9FA, 0x97E0}, {0x2F9FB, 0x2940A}, {0x2F9FC, 0x4AB2}, {0x2F9FD, 0x29496}, {0x2F9FE, 0x980B}, {0x2F9FF, 0x980B}, {0x2FA00, 0x9829}, {0x2FA01, 0x295B6}, {0x2FA02, 0x98E2}, {0x2FA03, 0x4B33},
|
||||
{0x2FA04, 0x9929}, {0x2FA05, 0x99A7}, {0x2FA06, 0x99C2}, {0x2FA07, 0x99FE}, {0x2FA08, 0x4BCE}, {0x2FA09, 0x29B30}, {0x2FA0A, 0x9B12}, {0x2FA0B, 0x9C40}, {0x2FA0C, 0x9CFD}, {0x2FA0D, 0x4CCE},
|
||||
{0x2FA0E, 0x4CED}, {0x2FA0F, 0x9D67}, {0x2FA10, 0x2A0CE}, {0x2FA11, 0x4CF8}, {0x2FA12, 0x2A105}, {0x2FA13, 0x2A20E}, {0x2FA14, 0x2A291}, {0x2FA15, 0x9EBB}, {0x2FA16, 0x4D56}, {0x2FA17, 0x9EF9},
|
||||
{0x2FA18, 0x9EFE}, {0x2FA19, 0x9F05}, {0x2FA1A, 0x9F0F}, {0x2FA1B, 0x9F16}, {0x2FA1D, 0x2A600},
|
||||
};
|
||||
|
||||
static std::string codepoint_to_utf8(uint32_t cp) {
|
||||
std::string result;
|
||||
if (/* 0x00 <= cp && */ cp <= 0x7f) {
|
||||
@ -404,7 +712,8 @@ static std::unordered_map<uint32_t, int> codepoint_type_map() {
|
||||
|
||||
static int codepoint_type(uint32_t cp) {
|
||||
static std::unordered_map<uint32_t, int> codepoint_types = codepoint_type_map();
|
||||
return codepoint_types.find(cp) == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : codepoint_types.at(cp);
|
||||
const auto it = codepoint_types.find(cp);
|
||||
return it == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second;
|
||||
}
|
||||
|
||||
static int codepoint_type(const std::string & utf8) {
|
||||
|
Loading…
Reference in New Issue
Block a user