mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-08 11:46:53 +01:00
simple : minor style changes
This commit is contained in:
parent
5c5a95ba2d
commit
0c19ae70d5
@ -2,17 +2,18 @@
|
|||||||
|
|
||||||
import gguf
|
import gguf
|
||||||
import gguf_namemap as tmap
|
import gguf_namemap as tmap
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import struct
|
import struct
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
from typing import Any, List
|
from typing import Any, List
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import torch
|
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
|
|
||||||
#NDArray = np.ndarray[Any, Any]
|
#NDArray = np.ndarray[Any, Any]
|
||||||
# compatible with python < 3.9
|
# compatible with python < 3.9
|
||||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||||
@ -268,7 +269,6 @@ for part_name in part_names:
|
|||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
data = model_part[name]
|
data = model_part[name]
|
||||||
|
|
||||||
|
|
||||||
old_dtype = data.dtype
|
old_dtype = data.dtype
|
||||||
|
|
||||||
# we don't need these
|
# we don't need these
|
||||||
|
@ -6,65 +6,32 @@
|
|||||||
#include "gguf-llama.h"
|
#include "gguf-llama.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <cinttypes>
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cstring>
|
|
||||||
#include <ctime>
|
|
||||||
#include <fstream>
|
|
||||||
#include <iostream>
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
int main(int argc, char ** argv) {
|
||||||
#include <signal.h>
|
|
||||||
#include <unistd.h>
|
|
||||||
#elif defined (_WIN32)
|
|
||||||
#define WIN32_LEAN_AND_MEAN
|
|
||||||
#define NOMINMAX
|
|
||||||
#include <windows.h>
|
|
||||||
#include <signal.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
int main(int argc, char ** argv)
|
|
||||||
{
|
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
//---------------------------------
|
if (argc == 1 || argv[1][0] == '-') {
|
||||||
// Print help :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
if ( argc == 1 || argv[1][0] == '-' )
|
|
||||||
{
|
|
||||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||||
return 1 ;
|
return 1 ;
|
||||||
}
|
}
|
||||||
|
|
||||||
//---------------------------------
|
if (argc >= 2) {
|
||||||
// Load parameters :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
if ( argc >= 2 )
|
|
||||||
{
|
|
||||||
params.model = argv[1];
|
params.model = argv[1];
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( argc >= 3 )
|
if (argc >= 3) {
|
||||||
{
|
|
||||||
params.prompt = argv[2];
|
params.prompt = argv[2];
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( params.prompt.empty() )
|
if (params.prompt.empty()) {
|
||||||
{
|
|
||||||
params.prompt = "Hello my name is";
|
params.prompt = "Hello my name is";
|
||||||
}
|
}
|
||||||
|
|
||||||
//---------------------------------
|
// init LLM
|
||||||
// Init LLM :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
@ -72,17 +39,14 @@ int main(int argc, char ** argv)
|
|||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
||||||
|
|
||||||
if ( model == NULL )
|
if (model == NULL) {
|
||||||
{
|
|
||||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
//---------------------------------
|
// tokenize the prompt
|
||||||
// Tokenize the prompt :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
std::vector<llama_token> tokens_list;
|
std::vector<llama_token> tokens_list;
|
||||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
@ -90,86 +54,68 @@ int main(int argc, char ** argv)
|
|||||||
const int max_context_size = llama_n_ctx(ctx);
|
const int max_context_size = llama_n_ctx(ctx);
|
||||||
const int max_tokens_list_size = max_context_size - 4;
|
const int max_tokens_list_size = max_context_size - 4;
|
||||||
|
|
||||||
if ( (int)tokens_list.size() > max_tokens_list_size )
|
if ((int)tokens_list.size() > max_tokens_list_size) {
|
||||||
{
|
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
||||||
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
|
||||||
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
|
|
||||||
// Print the tokens from the prompt :
|
for (auto id : tokens_list) {
|
||||||
|
fprintf(stderr, "%s", llama_token_to_str(ctx, id));
|
||||||
for( auto id : tokens_list )
|
|
||||||
{
|
|
||||||
printf( "%s" , llama_token_to_str( ctx , id ) );
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fflush(stdout);
|
fflush(stderr);
|
||||||
|
|
||||||
|
// main loop
|
||||||
//---------------------------------
|
|
||||||
// Main prediction loop :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
// The LLM keeps a contextual cache memory of previous token evaluation.
|
// The LLM keeps a contextual cache memory of previous token evaluation.
|
||||||
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
||||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||||||
|
|
||||||
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
while (llama_get_kv_cache_token_count(ctx) < max_context_size) {
|
||||||
{
|
// evaluate the transformer
|
||||||
//---------------------------------
|
|
||||||
// Evaluate the tokens :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
||||||
{
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
tokens_list.clear();
|
tokens_list.clear();
|
||||||
|
|
||||||
//---------------------------------
|
// sample the next token
|
||||||
// Select the best prediction :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
llama_token new_token_id = 0;
|
llama_token new_token_id = 0;
|
||||||
|
|
||||||
auto logits = llama_get_logits(ctx);
|
auto logits = llama_get_logits(ctx);
|
||||||
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
auto n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
|
|
||||||
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
{
|
|
||||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
// Select it using the "Greedy sampling" method :
|
|
||||||
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
||||||
|
|
||||||
|
|
||||||
// is it an end of stream ?
|
// is it an end of stream ?
|
||||||
if ( new_token_id == llama_token_eos() )
|
if (new_token_id == llama_token_eos()) {
|
||||||
{
|
|
||||||
fprintf(stderr, " [end of text]\n");
|
fprintf(stderr, " [end of text]\n");
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Print the new token :
|
// print the new token :
|
||||||
printf("%s", llama_token_to_str(ctx, new_token_id));
|
printf("%s", llama_token_to_str(ctx, new_token_id));
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
// Push this new token for next evaluation :
|
// push this new token for next evaluation
|
||||||
tokens_list.push_back(new_token_id);
|
tokens_list.push_back(new_token_id);
|
||||||
|
|
||||||
} // wend of main loop
|
}
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
@ -178,5 +124,3 @@ int main(int argc, char ** argv)
|
|||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
// EOF
|
|
||||||
|
@ -2,69 +2,37 @@
|
|||||||
#define _GNU_SOURCE
|
#define _GNU_SOURCE
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include "common.h"
|
|
||||||
#include "llama.h"
|
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
|
||||||
#include <cassert>
|
#include "common.h"
|
||||||
#include <cinttypes>
|
#include "llama.h"
|
||||||
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cstring>
|
|
||||||
#include <ctime>
|
|
||||||
#include <fstream>
|
|
||||||
#include <iostream>
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
int main(int argc, char ** argv) {
|
||||||
#include <signal.h>
|
|
||||||
#include <unistd.h>
|
|
||||||
#elif defined (_WIN32)
|
|
||||||
#define WIN32_LEAN_AND_MEAN
|
|
||||||
#define NOMINMAX
|
|
||||||
#include <windows.h>
|
|
||||||
#include <signal.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
int main(int argc, char ** argv)
|
|
||||||
{
|
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
//---------------------------------
|
if (argc == 1 || argv[1][0] == '-') {
|
||||||
// Print help :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
if ( argc == 1 || argv[1][0] == '-' )
|
|
||||||
{
|
|
||||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||||
return 1 ;
|
return 1 ;
|
||||||
}
|
}
|
||||||
|
|
||||||
//---------------------------------
|
if (argc >= 2) {
|
||||||
// Load parameters :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
if ( argc >= 2 )
|
|
||||||
{
|
|
||||||
params.model = argv[1];
|
params.model = argv[1];
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( argc >= 3 )
|
if (argc >= 3) {
|
||||||
{
|
|
||||||
params.prompt = argv[2];
|
params.prompt = argv[2];
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( params.prompt.empty() )
|
if (params.prompt.empty()) {
|
||||||
{
|
|
||||||
params.prompt = "Hello my name is";
|
params.prompt = "Hello my name is";
|
||||||
}
|
}
|
||||||
|
|
||||||
//---------------------------------
|
// init LLM
|
||||||
// Init LLM :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
@ -73,15 +41,12 @@ int main(int argc, char ** argv)
|
|||||||
|
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
|
||||||
if ( model == NULL )
|
if (model == NULL) {
|
||||||
{
|
|
||||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
//---------------------------------
|
// tokenize the prompt
|
||||||
// Tokenize the prompt :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
std::vector<llama_token> tokens_list;
|
std::vector<llama_token> tokens_list;
|
||||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
@ -89,86 +54,68 @@ int main(int argc, char ** argv)
|
|||||||
const int max_context_size = llama_n_ctx(ctx);
|
const int max_context_size = llama_n_ctx(ctx);
|
||||||
const int max_tokens_list_size = max_context_size - 4;
|
const int max_tokens_list_size = max_context_size - 4;
|
||||||
|
|
||||||
if ( (int)tokens_list.size() > max_tokens_list_size )
|
if ((int)tokens_list.size() > max_tokens_list_size) {
|
||||||
{
|
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
||||||
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
|
||||||
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
|
|
||||||
// Print the tokens from the prompt :
|
for (auto id : tokens_list) {
|
||||||
|
fprintf(stderr, "%s", llama_token_to_str(ctx, id));
|
||||||
for( auto id : tokens_list )
|
|
||||||
{
|
|
||||||
printf( "%s" , llama_token_to_str( ctx , id ) );
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fflush(stdout);
|
fflush(stderr);
|
||||||
|
|
||||||
|
// main loop
|
||||||
//---------------------------------
|
|
||||||
// Main prediction loop :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
// The LLM keeps a contextual cache memory of previous token evaluation.
|
// The LLM keeps a contextual cache memory of previous token evaluation.
|
||||||
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
||||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||||||
|
|
||||||
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
while (llama_get_kv_cache_token_count( ctx ) < max_context_size) {
|
||||||
{
|
// evaluate the transformer
|
||||||
//---------------------------------
|
|
||||||
// Evaluate the tokens :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
||||||
{
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
tokens_list.clear();
|
tokens_list.clear();
|
||||||
|
|
||||||
//---------------------------------
|
// sample the next token
|
||||||
// Select the best prediction :
|
|
||||||
//---------------------------------
|
|
||||||
|
|
||||||
llama_token new_token_id = 0;
|
llama_token new_token_id = 0;
|
||||||
|
|
||||||
auto logits = llama_get_logits(ctx);
|
auto logits = llama_get_logits(ctx);
|
||||||
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
auto n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
|
|
||||||
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
{
|
|
||||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
// Select it using the "Greedy sampling" method :
|
|
||||||
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
||||||
|
|
||||||
|
|
||||||
// is it an end of stream ?
|
// is it an end of stream ?
|
||||||
if ( new_token_id == llama_token_eos() )
|
if (new_token_id == llama_token_eos()) {
|
||||||
{
|
|
||||||
fprintf(stderr, " [end of text]\n");
|
fprintf(stderr, " [end of text]\n");
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Print the new token :
|
// print the new token :
|
||||||
printf("%s", llama_token_to_str(ctx, new_token_id));
|
printf("%s", llama_token_to_str(ctx, new_token_id));
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
// Push this new token for next evaluation :
|
// push this new token for next evaluation
|
||||||
tokens_list.push_back(new_token_id);
|
tokens_list.push_back(new_token_id);
|
||||||
|
|
||||||
} // wend of main loop
|
}
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
@ -177,5 +124,3 @@ int main(int argc, char ** argv)
|
|||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
// EOF
|
|
||||||
|
@ -5,7 +5,9 @@
|
|||||||
|
|
||||||
#ifndef GGUF_UTIL_H
|
#ifndef GGUF_UTIL_H
|
||||||
#define GGUF_UTIL_H
|
#define GGUF_UTIL_H
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
#include <cerrno>
|
#include <cerrno>
|
||||||
@ -62,7 +64,6 @@ static std::string format(const char * fmt, ...) {
|
|||||||
return std::string(buf.data(), size);
|
return std::string(buf.data(), size);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<typename T>
|
template<typename T>
|
||||||
static std::string to_string(const T & val) {
|
static std::string to_string(const T & val) {
|
||||||
std::stringstream ss;
|
std::stringstream ss;
|
||||||
|
Loading…
Reference in New Issue
Block a user