mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
simple : minor style changes
This commit is contained in:
parent
5c5a95ba2d
commit
0c19ae70d5
@ -2,17 +2,18 @@
|
||||
|
||||
import gguf
|
||||
import gguf_namemap as tmap
|
||||
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
|
||||
#NDArray = np.ndarray[Any, Any]
|
||||
# compatible with python < 3.9
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
@ -268,7 +269,6 @@ for part_name in part_names:
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# we don't need these
|
||||
|
@ -6,65 +6,32 @@
|
||||
#include "gguf-llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
int main(int argc, char ** argv)
|
||||
{
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
//---------------------------------
|
||||
// Print help :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc == 1 || argv[1][0] == '-' )
|
||||
{
|
||||
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Load parameters :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc >= 2 )
|
||||
{
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if ( argc >= 3 )
|
||||
{
|
||||
if (argc >= 3) {
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if ( params.prompt.empty() )
|
||||
{
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Init LLM :
|
||||
//---------------------------------
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
@ -72,111 +39,88 @@ int main(int argc, char ** argv)
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
||||
|
||||
if ( model == NULL )
|
||||
{
|
||||
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
//---------------------------------
|
||||
// Tokenize the prompt :
|
||||
//---------------------------------
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx( ctx );
|
||||
const int max_tokens_list_size = max_context_size - 4 ;
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ( (int)tokens_list.size() > max_tokens_list_size )
|
||||
{
|
||||
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
||||
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
||||
if ((int)tokens_list.size() > max_tokens_list_size) {
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf( stderr, "\n\n" );
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
// Print the tokens from the prompt :
|
||||
|
||||
for( auto id : tokens_list )
|
||||
{
|
||||
printf( "%s" , llama_token_to_str( ctx , id ) );
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_str(ctx, id));
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
fflush(stderr);
|
||||
|
||||
|
||||
//---------------------------------
|
||||
// Main prediction loop :
|
||||
//---------------------------------
|
||||
// main loop
|
||||
|
||||
// The LLM keeps a contextual cache memory of previous token evaluation.
|
||||
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||||
|
||||
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
||||
{
|
||||
//---------------------------------
|
||||
// Evaluate the tokens :
|
||||
//---------------------------------
|
||||
while (llama_get_kv_cache_token_count(ctx) < max_context_size) {
|
||||
// evaluate the transformer
|
||||
|
||||
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
||||
{
|
||||
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
||||
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
tokens_list.clear();
|
||||
|
||||
//---------------------------------
|
||||
// Select the best prediction :
|
||||
//---------------------------------
|
||||
// sample the next token
|
||||
|
||||
llama_token new_token_id = 0;
|
||||
|
||||
auto logits = llama_get_logits( ctx );
|
||||
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve( n_vocab );
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
||||
{
|
||||
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// Select it using the "Greedy sampling" method :
|
||||
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
|
||||
|
||||
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
||||
|
||||
// is it an end of stream ?
|
||||
if ( new_token_id == llama_token_eos() )
|
||||
{
|
||||
if (new_token_id == llama_token_eos()) {
|
||||
fprintf(stderr, " [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
||||
// Print the new token :
|
||||
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
|
||||
fflush( stdout );
|
||||
// print the new token :
|
||||
printf("%s", llama_token_to_str(ctx, new_token_id));
|
||||
fflush(stdout);
|
||||
|
||||
// Push this new token for next evaluation :
|
||||
tokens_list.push_back( new_token_id );
|
||||
// push this new token for next evaluation
|
||||
tokens_list.push_back(new_token_id);
|
||||
|
||||
} // wend of main loop
|
||||
}
|
||||
|
||||
llama_free( ctx );
|
||||
llama_free_model( model );
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// EOF
|
||||
|
@ -2,180 +2,125 @@
|
||||
#define _GNU_SOURCE
|
||||
#endif
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
int main(int argc, char ** argv)
|
||||
{
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
//---------------------------------
|
||||
// Print help :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc == 1 || argv[1][0] == '-' )
|
||||
{
|
||||
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Load parameters :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc >= 2 )
|
||||
{
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if ( argc >= 3 )
|
||||
{
|
||||
if (argc >= 3) {
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if ( params.prompt.empty() )
|
||||
{
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Init LLM :
|
||||
//---------------------------------
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
if ( model == NULL )
|
||||
{
|
||||
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Tokenize the prompt :
|
||||
//---------------------------------
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx( ctx );
|
||||
const int max_tokens_list_size = max_context_size - 4 ;
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ( (int)tokens_list.size() > max_tokens_list_size )
|
||||
{
|
||||
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
||||
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
||||
if ((int)tokens_list.size() > max_tokens_list_size) {
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf( stderr, "\n\n" );
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
// Print the tokens from the prompt :
|
||||
|
||||
for( auto id : tokens_list )
|
||||
{
|
||||
printf( "%s" , llama_token_to_str( ctx , id ) );
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_str(ctx, id));
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
fflush(stderr);
|
||||
|
||||
|
||||
//---------------------------------
|
||||
// Main prediction loop :
|
||||
//---------------------------------
|
||||
// main loop
|
||||
|
||||
// The LLM keeps a contextual cache memory of previous token evaluation.
|
||||
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||||
|
||||
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
||||
{
|
||||
//---------------------------------
|
||||
// Evaluate the tokens :
|
||||
//---------------------------------
|
||||
while (llama_get_kv_cache_token_count( ctx ) < max_context_size) {
|
||||
// evaluate the transformer
|
||||
|
||||
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
||||
{
|
||||
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
||||
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
tokens_list.clear();
|
||||
|
||||
//---------------------------------
|
||||
// Select the best prediction :
|
||||
//---------------------------------
|
||||
// sample the next token
|
||||
|
||||
llama_token new_token_id = 0;
|
||||
|
||||
auto logits = llama_get_logits( ctx );
|
||||
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve( n_vocab );
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
||||
{
|
||||
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// Select it using the "Greedy sampling" method :
|
||||
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
|
||||
|
||||
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
||||
|
||||
// is it an end of stream ?
|
||||
if ( new_token_id == llama_token_eos() )
|
||||
{
|
||||
if (new_token_id == llama_token_eos()) {
|
||||
fprintf(stderr, " [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
||||
// Print the new token :
|
||||
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
|
||||
fflush( stdout );
|
||||
// print the new token :
|
||||
printf("%s", llama_token_to_str(ctx, new_token_id));
|
||||
fflush(stdout);
|
||||
|
||||
// Push this new token for next evaluation :
|
||||
tokens_list.push_back( new_token_id );
|
||||
// push this new token for next evaluation
|
||||
tokens_list.push_back(new_token_id);
|
||||
|
||||
} // wend of main loop
|
||||
}
|
||||
|
||||
llama_free( ctx );
|
||||
llama_free_model( model );
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// EOF
|
||||
|
@ -5,7 +5,9 @@
|
||||
|
||||
#ifndef GGUF_UTIL_H
|
||||
#define GGUF_UTIL_H
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
@ -62,7 +64,6 @@ static std::string format(const char * fmt, ...) {
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
static std::string to_string(const T & val) {
|
||||
std::stringstream ss;
|
||||
|
Loading…
Reference in New Issue
Block a user