mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-24 18:39:19 +01:00
[SYCL] Add oneDNN primitive support (#9091)
* add onednn * add sycl_f16 * add dnnl stream * add engine map * use dnnl for intel only * use fp16fp16fp16 * update doc
This commit is contained in:
parent
a1631e53f6
commit
1731d4238f
@ -28,6 +28,7 @@
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
@ -60,6 +61,8 @@
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
|
||||
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
|
||||
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
|
||||
]
|
||||
}
|
||||
|
@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@ -28,10 +28,6 @@
|
||||
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
|
||||
|
||||
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
|
||||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
The SYCL backend would be broken by some PRs due to no online CI.
|
||||
@ -45,6 +41,10 @@ The following release is verified with good quality:
|
||||
|
||||
## News
|
||||
|
||||
|
||||
- 2024.8
|
||||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Arch Linux is verified successfully.
|
||||
@ -196,7 +196,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
|
||||
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
@ -255,8 +255,6 @@ or
|
||||
# Export relevant ENV variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
|
@ -549,6 +549,13 @@ if (GGML_SYCL)
|
||||
file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp")
|
||||
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
|
||||
|
||||
find_package(DNNL)
|
||||
message("-- DNNL found:"${DNNL_FOUND})
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_DNNL=0)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
@ -561,6 +568,9 @@ if (GGML_SYCL)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_EXTRA_LIBS DNNL::dnnl)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_RPC)
|
||||
|
@ -38,6 +38,7 @@
|
||||
|
||||
#include "ggml-sycl/backend.hpp"
|
||||
#include "ggml-sycl/presets.hpp"
|
||||
#include "ggml-sycl/gemm.hpp"
|
||||
|
||||
bool ggml_sycl_loaded(void);
|
||||
void ggml_sycl_free_data(struct ggml_tensor * tensor);
|
||||
@ -2482,6 +2483,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
|
||||
const sycl::half alpha_f16 = 1.0f;
|
||||
const sycl::half beta_f16 = 0.0f;
|
||||
#if !GGML_SYCL_DNNL
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
|
||||
*stream, oneapi::mkl::transpose::trans,
|
||||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||||
@ -2491,6 +2493,13 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
dpct::library_data_t::real_half)));
|
||||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||||
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||||
#else
|
||||
auto dnnl_stream = ctx.stream_dnnl(stream);
|
||||
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
|
||||
src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(), dst_f16.get(), DnnlGemmWrapper::to_dt<sycl::half>());
|
||||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||||
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
|
||||
@ -2513,13 +2522,18 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
|
||||
#if !GGML_SYCL_DNNL
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
|
||||
*stream, oneapi::mkl::transpose::trans,
|
||||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||||
dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
|
||||
src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
|
||||
dst_dd_i, ldc)));
|
||||
#else
|
||||
auto dnnl_stream = ctx.stream_dnnl(stream);
|
||||
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i, DnnlGemmWrapper::to_dt<float>(),
|
||||
src0_ddf_i, DnnlGemmWrapper::to_dt<float>(), dst_dd_i, DnnlGemmWrapper::to_dt<float>());
|
||||
#endif
|
||||
}
|
||||
(void) dst;
|
||||
(void) src1_ddq_i;
|
||||
|
@ -19,6 +19,10 @@
|
||||
#include "dpct/helper.hpp"
|
||||
#include "ggml-sycl.h"
|
||||
#include "presets.hpp"
|
||||
#if GGML_SYCL_DNNL
|
||||
#include "dnnl.hpp"
|
||||
#include "dnnl_sycl.hpp"
|
||||
#endif
|
||||
|
||||
#define GGML_COMMON_DECL_SYCL
|
||||
#define GGML_COMMON_IMPL_SYCL
|
||||
@ -277,6 +281,52 @@ struct ggml_backend_sycl_context {
|
||||
return stream(device, 0);
|
||||
}
|
||||
|
||||
#if GGML_SYCL_DNNL
|
||||
dnnl::engine make_engine(sycl::queue* q) {
|
||||
// Get the device associated with the queue
|
||||
sycl::device dev = q->get_device();
|
||||
// Get the context associated with the queue
|
||||
sycl::context ctx = q->get_context();
|
||||
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
|
||||
return eng;
|
||||
}
|
||||
|
||||
std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
|
||||
std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
|
||||
dnnl::stream stream_dnnl(int device, int _stream) {
|
||||
auto q = stream(device, _stream);
|
||||
return stream_dnnl(q);
|
||||
}
|
||||
dnnl::engine engine_dnnl(sycl::queue* qptr) {
|
||||
auto it = engine_map.find(qptr);
|
||||
if (it == engine_map.end()) {
|
||||
auto eng = make_engine(qptr);
|
||||
engine_map[qptr] = eng;
|
||||
return eng;
|
||||
}
|
||||
else
|
||||
{
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
dnnl::stream stream_dnnl(sycl::queue* qptr) {
|
||||
auto it = stream_map.find(qptr);
|
||||
if (it == stream_map.end()) {
|
||||
auto eng = engine_dnnl(qptr);
|
||||
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
|
||||
stream_map[qptr] = stream;
|
||||
return stream;
|
||||
}
|
||||
else
|
||||
{
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
dnnl::stream stream_dnnl() {
|
||||
return stream_dnnl(device, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
// pool
|
||||
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
|
||||
|
||||
|
101
ggml/src/ggml-sycl/gemm.hpp
Normal file
101
ggml/src/ggml-sycl/gemm.hpp
Normal file
@ -0,0 +1,101 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_GEMM_HPP
|
||||
#define GGML_SYCL_GEMM_HPP
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
#if GGML_SYCL_DNNL
|
||||
|
||||
#include "dnnl.hpp"
|
||||
#include "dnnl_sycl.hpp"
|
||||
|
||||
class DnnlGemmWrapper {
|
||||
public:
|
||||
using dt = dnnl::memory::data_type;
|
||||
using tag = dnnl::memory::format_tag;
|
||||
|
||||
template<typename T>
|
||||
static constexpr dt to_dt() {
|
||||
if constexpr (std::is_same_v<T, float>) return dt::f32;
|
||||
else if constexpr (std::is_same_v<T, sycl::half>) return dt::f16;
|
||||
else static_assert(0);
|
||||
}
|
||||
|
||||
static inline void row_gemm(sycl::queue& q, bool a_trans,
|
||||
bool b_trans, int m, int n, int k,
|
||||
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
|
||||
{
|
||||
// Get the device associated with the queue
|
||||
sycl::device dev = q.get_device();
|
||||
// Get the context associated with the queue
|
||||
sycl::context ctx = q.get_context();
|
||||
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
|
||||
const dnnl::stream stream = dnnl::sycl_interop::make_stream(eng, q);
|
||||
dnnl::memory::dims a_dims = { m, k };
|
||||
dnnl::memory::dims b_dims = { k, n };
|
||||
dnnl::memory::dims c_dims = { m, n };
|
||||
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
|
||||
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
|
||||
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
|
||||
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
|
||||
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
|
||||
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
|
||||
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
|
||||
|
||||
// Create the primitive.
|
||||
auto matmul_prim = dnnl::matmul(matmul_pd);
|
||||
// Primitive arguments.
|
||||
std::unordered_map<int, dnnl::memory> matmul_args;
|
||||
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
|
||||
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
|
||||
matmul_args.insert({ DNNL_ARG_DST, c_mem });
|
||||
|
||||
matmul_prim.execute(stream, matmul_args);
|
||||
}
|
||||
|
||||
|
||||
static inline void row_gemm(const dnnl::stream& stream, bool a_trans,
|
||||
bool b_trans, int m, int n, int k,
|
||||
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
|
||||
{
|
||||
auto const eng = stream.get_engine();
|
||||
dnnl::memory::dims a_dims = { m, k };
|
||||
dnnl::memory::dims b_dims = { k, n };
|
||||
dnnl::memory::dims c_dims = { m, n };
|
||||
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
|
||||
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
|
||||
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
|
||||
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
|
||||
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
|
||||
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
|
||||
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
|
||||
|
||||
// Create the primitive.
|
||||
auto matmul_prim = dnnl::matmul(matmul_pd);
|
||||
// Primitive arguments.
|
||||
std::unordered_map<int, dnnl::memory> matmul_args;
|
||||
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
|
||||
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
|
||||
matmul_args.insert({ DNNL_ARG_DST, c_mem });
|
||||
|
||||
matmul_prim.execute(stream, matmul_args);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif // GGML_SYCL_GEMM_HPP
|
Loading…
Reference in New Issue
Block a user