mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
backend : offload large batches to GPU (#6083)
* backend : offload large batches to GPU * fix hip * code cleanup * fix CUDA split buffers * Update ggml-backend-impl.h Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix memset without set_device * imatrix : remove sched affix from weight names * sched : add a new split if the current one has too many inputs reduce max inputs per split more cleanup * update backends ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
parent
496bc79bc2
commit
2bf8d0f7c4
@ -56,13 +56,31 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||||||
const struct ggml_tensor * src0 = t->src[0];
|
const struct ggml_tensor * src0 = t->src[0];
|
||||||
const struct ggml_tensor * src1 = t->src[1];
|
const struct ggml_tensor * src1 = t->src[1];
|
||||||
|
|
||||||
|
std::string wname;
|
||||||
|
{
|
||||||
|
// remove any prefix and suffixes from the name
|
||||||
|
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
|
||||||
|
const char * p = strchr(src0->name, '#');
|
||||||
|
if (p != NULL) {
|
||||||
|
p = p + 1;
|
||||||
|
const char * q = strchr(p, '#');
|
||||||
|
if (q != NULL) {
|
||||||
|
wname = std::string(p, q - p);
|
||||||
|
} else {
|
||||||
|
wname = p;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
wname = src0->name;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
||||||
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
||||||
if (ask) {
|
if (ask) {
|
||||||
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
|
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
|
||||||
if (t->op != GGML_OP_MUL_MAT) return false;
|
if (t->op != GGML_OP_MUL_MAT) return false;
|
||||||
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
|
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
|
||||||
if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false;
|
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -94,12 +112,12 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||||||
// this is necessary to guarantee equal number of "ncall" for each tensor
|
// this is necessary to guarantee equal number of "ncall" for each tensor
|
||||||
for (int ex = 0; ex < n_as; ++ex) {
|
for (int ex = 0; ex < n_as; ++ex) {
|
||||||
src0 = t->src[2 + ex];
|
src0 = t->src[2 + ex];
|
||||||
auto& e = m_stats[src0->name];
|
auto& e = m_stats[wname];
|
||||||
if (e.values.empty()) {
|
if (e.values.empty()) {
|
||||||
e.values.resize(src1->ne[0], 0);
|
e.values.resize(src1->ne[0], 0);
|
||||||
}
|
}
|
||||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||||
exit(1); //GGML_ASSERT(false);
|
exit(1); //GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||||
@ -107,7 +125,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||||
++e.ncall;
|
++e.ncall;
|
||||||
if (m_params.verbosity > 1) {
|
if (m_params.verbosity > 1) {
|
||||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||||
}
|
}
|
||||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||||
const int excur = m_ids[row*n_as + idx];
|
const int excur = m_ids[row*n_as + idx];
|
||||||
@ -129,17 +147,17 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
auto& e = m_stats[src0->name];
|
auto& e = m_stats[wname];
|
||||||
if (e.values.empty()) {
|
if (e.values.empty()) {
|
||||||
e.values.resize(src1->ne[0], 0);
|
e.values.resize(src1->ne[0], 0);
|
||||||
}
|
}
|
||||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||||
exit(1); //GGML_ASSERT(false);
|
exit(1); //GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
++e.ncall;
|
++e.ncall;
|
||||||
if (m_params.verbosity > 1) {
|
if (m_params.verbosity > 1) {
|
||||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||||
}
|
}
|
||||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||||
const float * x = data + row * src1->ne[0];
|
const float * x = data + row * src1->ne[0];
|
||||||
|
@ -114,10 +114,10 @@ static std::string get_cpu_info() {
|
|||||||
static std::string get_gpu_info() {
|
static std::string get_gpu_info() {
|
||||||
std::string id;
|
std::string id;
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
int count = ggml_cuda_get_device_count();
|
int count = ggml_backend_cuda_get_device_count();
|
||||||
for (int i = 0; i < count; i++) {
|
for (int i = 0; i < count; i++) {
|
||||||
char buf[128];
|
char buf[128];
|
||||||
ggml_cuda_get_device_description(i, buf, sizeof(buf));
|
ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
|
||||||
id += buf;
|
id += buf;
|
||||||
if (i < count - 1) {
|
if (i < count - 1) {
|
||||||
id += "/";
|
id += "/";
|
||||||
|
10
ggml-alloc.c
10
ggml-alloc.c
@ -548,7 +548,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
|||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
|
|
||||||
if (ggml_is_view(node)) {
|
// TODO: better way to add external dependencies
|
||||||
|
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
|
||||||
|
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
|
||||||
|
// itself is never used and should not be considered a dependency
|
||||||
|
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
|
||||||
struct ggml_tensor * view_src = node->view_src;
|
struct ggml_tensor * view_src = node->view_src;
|
||||||
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
||||||
}
|
}
|
||||||
@ -565,8 +569,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
|||||||
|
|
||||||
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
||||||
|
|
||||||
// allocate explicit inputs and leafs
|
// allocate explicit inputs
|
||||||
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
|
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||||
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -103,6 +103,11 @@ extern "C" {
|
|||||||
// check if the backend supports an operation
|
// check if the backend supports an operation
|
||||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
|
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||||
|
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||||
|
// even if the weight has to be copied from the CPU temporarily
|
||||||
|
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
// (optional) event synchronization
|
// (optional) event synchronization
|
||||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||||
|
276
ggml-backend.c
276
ggml-backend.c
@ -278,7 +278,7 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
|
|||||||
return err;
|
return err;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
return backend->iface.graph_compute(backend, cgraph);
|
return backend->iface.graph_compute(backend, cgraph);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -286,6 +286,13 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
|
|||||||
return backend->iface.supports_op(backend, op);
|
return backend->iface.supports_op(backend, op);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
|
if (backend->iface.offload_op != NULL) {
|
||||||
|
return backend->iface.offload_op(backend, op);
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
// backend copy
|
// backend copy
|
||||||
|
|
||||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||||
@ -761,6 +768,10 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
|
|||||||
|
|
||||||
if (cpu_plan->cplan.work_size > 0) {
|
if (cpu_plan->cplan.work_size > 0) {
|
||||||
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
||||||
|
if (cpu_plan->cplan.work_data == NULL) {
|
||||||
|
free(cpu_plan);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||||
@ -834,6 +845,7 @@ static struct ggml_backend_i cpu_backend_i = {
|
|||||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
@ -999,11 +1011,11 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef GGML_SCHED_MAX_SPLITS
|
#ifndef GGML_SCHED_MAX_SPLITS
|
||||||
#define GGML_SCHED_MAX_SPLITS 256
|
#define GGML_SCHED_MAX_SPLITS 2048
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
||||||
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
|
#define GGML_SCHED_MAX_SPLIT_INPUTS 4
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef GGML_SCHED_MAX_COPIES
|
#ifndef GGML_SCHED_MAX_COPIES
|
||||||
@ -1043,8 +1055,9 @@ struct ggml_backend_sched {
|
|||||||
struct ggml_cgraph * graph;
|
struct ggml_cgraph * graph;
|
||||||
|
|
||||||
// graph splits
|
// graph splits
|
||||||
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
|
struct ggml_backend_sched_split * splits;
|
||||||
int n_splits;
|
int n_splits;
|
||||||
|
int splits_capacity;
|
||||||
|
|
||||||
// pipeline parallelism support
|
// pipeline parallelism support
|
||||||
int n_copies;
|
int n_copies;
|
||||||
@ -1114,40 +1127,48 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
|||||||
// TODO: use supports_op to check if the backend supports the op
|
// TODO: use supports_op to check if the backend supports the op
|
||||||
|
|
||||||
// assign pre-allocated nodes to their backend
|
// assign pre-allocated nodes to their backend
|
||||||
// dst
|
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
||||||
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
if (cur_backend_id != -1) {
|
||||||
if (cur_backend != -1) {
|
|
||||||
SET_CAUSE(tensor, "1.dst");
|
SET_CAUSE(tensor, "1.dst");
|
||||||
return cur_backend;
|
return cur_backend_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
// view_src
|
// view_src
|
||||||
if (tensor->view_src != NULL) {
|
if (tensor->view_src != NULL) {
|
||||||
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
||||||
if (cur_backend != -1) {
|
if (cur_backend_id != -1) {
|
||||||
SET_CAUSE(tensor, "1.vsrc");
|
SET_CAUSE(tensor, "1.vsrc");
|
||||||
return cur_backend;
|
return cur_backend_id;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// input
|
// graph input
|
||||||
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
|
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||||
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
|
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
|
||||||
SET_CAUSE(tensor, "1.inp");
|
SET_CAUSE(tensor, "1.inp");
|
||||||
return cur_backend;
|
return cur_backend_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
// assign nodes that use weights to the backend of the weights
|
// assign nodes that use weights to the backend of the weights
|
||||||
|
// operations with weights are preferably run on the same backend as the weights
|
||||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||||
const struct ggml_tensor * src = tensor->src[i];
|
const struct ggml_tensor * src = tensor->src[i];
|
||||||
if (src == NULL) {
|
if (src == NULL) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||||
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
|
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
|
||||||
// operations with weights are always run on the same backend as the weights
|
// check if a backend with higher prio wants to offload the op
|
||||||
|
if (src_backend_id == sched->n_backends - 1) {
|
||||||
|
for (int b = 0; b < src_backend_id; b++) {
|
||||||
|
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||||
|
SET_CAUSE(tensor, "1.off");
|
||||||
|
return b;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
SET_CAUSE(tensor, "1.wgt%d", i);
|
SET_CAUSE(tensor, "1.wgt%d", i);
|
||||||
return src_backend;
|
return src_backend_id;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1227,28 +1248,31 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
// pass 1: assign backends to ops with pre-allocated inputs
|
// pass 1: assign backends to ops with pre-allocated inputs
|
||||||
for (int i = 0; i < graph->n_leafs; i++) {
|
for (int i = 0; i < graph->n_leafs; i++) {
|
||||||
struct ggml_tensor * leaf = graph->leafs[i];
|
struct ggml_tensor * leaf = graph->leafs[i];
|
||||||
if (tensor_backend_id(leaf) != -1) {
|
int * leaf_backend_id = &tensor_backend_id(leaf);
|
||||||
|
if (*leaf_backend_id != -1) {
|
||||||
// do not overwrite user assignments
|
// do not overwrite user assignments
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
if (tensor_backend_id(node) != -1) {
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
|
if (*node_backend_id != -1) {
|
||||||
// do not overwrite user assignments
|
// do not overwrite user assignments
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
|
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||||
// src
|
// src
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
struct ggml_tensor * src = node->src[j];
|
struct ggml_tensor * src = node->src[j];
|
||||||
if (src == NULL) {
|
if (src == NULL) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
if (tensor_backend_id(src) == -1) {
|
int * src_backend_id = &tensor_backend_id(src);
|
||||||
tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
|
if (*src_backend_id == -1) {
|
||||||
|
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1270,21 +1294,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
if (tensor_backend_id == sched->n_backends - 1) {
|
if (*node_backend_id == sched->n_backends - 1) {
|
||||||
// skip cpu (lowest prio backend)
|
// skip cpu (lowest prio backend)
|
||||||
cur_backend_id = -1;
|
cur_backend_id = -1;
|
||||||
} else {
|
} else {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.2");
|
SET_CAUSE(node, "2.2");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// pass 2.1 expand gpu up
|
// pass 2.1 expand gpu up
|
||||||
{
|
{
|
||||||
int cur_backend_id = -1;
|
int cur_backend_id = -1;
|
||||||
@ -1293,22 +1316,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
if (tensor_backend_id == sched->n_backends - 1) {
|
if (*node_backend_id == sched->n_backends - 1) {
|
||||||
// skip cpu (lowest prio backend)
|
// skip cpu (lowest prio backend)
|
||||||
cur_backend_id = -1;
|
cur_backend_id = -1;
|
||||||
} else {
|
} else {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.1");
|
SET_CAUSE(node, "2.1");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// pass 2.4 expand rest down
|
// pass 2.4 expand rest down
|
||||||
{
|
{
|
||||||
int cur_backend_id = -1;
|
int cur_backend_id = -1;
|
||||||
@ -1317,11 +1338,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.4");
|
SET_CAUSE(node, "2.4");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1334,11 +1355,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (ggml_is_view_op(node->op)) {
|
if (ggml_is_view_op(node->op)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
int * node_backend_id = &tensor_backend_id(node);
|
||||||
if (tensor_backend_id != -1) {
|
if (*node_backend_id != -1) {
|
||||||
cur_backend_id = tensor_backend_id;
|
cur_backend_id = *node_backend_id;
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(node) = cur_backend_id;
|
*node_backend_id = cur_backend_id;
|
||||||
SET_CAUSE(node, "2.3");
|
SET_CAUSE(node, "2.3");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1351,9 +1372,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
// pass 3: assign backends to remaining src from dst and view_src
|
// pass 3: assign backends to remaining src from dst and view_src
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
int cur_backend_id = tensor_backend_id(node);
|
int * cur_backend_id = &tensor_backend_id(node);
|
||||||
if (node->view_src != NULL && cur_backend_id == -1) {
|
if (node->view_src != NULL && *cur_backend_id == -1) {
|
||||||
cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
|
*cur_backend_id = tensor_backend_id(node->view_src);
|
||||||
SET_CAUSE(node, "3.vsrc");
|
SET_CAUSE(node, "3.vsrc");
|
||||||
}
|
}
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
@ -1361,14 +1382,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
if (src == NULL) {
|
if (src == NULL) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
int src_backend_id = tensor_backend_id(src);
|
int * src_backend_id = &tensor_backend_id(src);
|
||||||
if (src_backend_id == -1) {
|
if (*src_backend_id == -1) {
|
||||||
if (src->view_src != NULL) {
|
if (src->view_src != NULL) {
|
||||||
// views are always on the same backend as the source
|
// views are always on the same backend as the source
|
||||||
tensor_backend_id(src) = tensor_backend_id(src->view_src);
|
*src_backend_id = tensor_backend_id(src->view_src);
|
||||||
SET_CAUSE(src, "3.vsrc");
|
SET_CAUSE(src, "3.vsrc");
|
||||||
} else {
|
} else {
|
||||||
tensor_backend_id(src) = cur_backend_id;
|
*src_backend_id = *cur_backend_id;
|
||||||
SET_CAUSE(src, "3.cur");
|
SET_CAUSE(src, "3.cur");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1380,19 +1401,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
|
|
||||||
// pass 4: split graph, find tensors that need to be copied
|
// pass 4: split graph, find tensors that need to be copied
|
||||||
{
|
{
|
||||||
int cur_split = 0;
|
int i_split = 0;
|
||||||
|
struct ggml_backend_sched_split * split = &sched->splits[0];
|
||||||
// find the backend of the first split, skipping view ops
|
// find the backend of the first split, skipping view ops
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
if (!ggml_is_view_op(node->op)) {
|
if (!ggml_is_view_op(node->op)) {
|
||||||
sched->splits[0].backend_id = tensor_backend_id(node);
|
split->backend_id = tensor_backend_id(node);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
sched->splits[0].i_start = 0;
|
split->i_start = 0;
|
||||||
sched->splits[0].n_inputs = 0;
|
split->n_inputs = 0;
|
||||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
|
||||||
int cur_backend_id = sched->splits[0].backend_id;
|
int cur_backend_id = split->backend_id;
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
for (int i = 0; i < graph->n_nodes; i++) {
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
struct ggml_tensor * node = graph->nodes[i];
|
||||||
|
|
||||||
@ -1400,18 +1422,54 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
int tensor_backend_id = tensor_backend_id(node);
|
const int node_backend_id = tensor_backend_id(node);
|
||||||
|
|
||||||
GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
|
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
|
||||||
|
|
||||||
if (tensor_backend_id != cur_backend_id) {
|
// check if we should start a new split based on the sources of the current node
|
||||||
sched->splits[cur_split].i_end = i;
|
bool need_new_split = false;
|
||||||
cur_split++;
|
if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
|
||||||
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
sched->splits[cur_split].backend_id = tensor_backend_id;
|
struct ggml_tensor * src = node->src[j];
|
||||||
sched->splits[cur_split].i_start = i;
|
if (src == NULL) {
|
||||||
sched->splits[cur_split].n_inputs = 0;
|
continue;
|
||||||
cur_backend_id = tensor_backend_id;
|
}
|
||||||
|
// check if a weight is on a different backend
|
||||||
|
// by starting a new split, the memory of the previously offloaded weights can be reused
|
||||||
|
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||||
|
int src_backend_id = tensor_backend_id(src);
|
||||||
|
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
|
||||||
|
need_new_split = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// check if the split has too many inputs
|
||||||
|
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
||||||
|
const size_t id = hash_id(src);
|
||||||
|
int src_backend_id = sched->tensor_backend_id[id];
|
||||||
|
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
|
||||||
|
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
||||||
|
need_new_split = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (node_backend_id != cur_backend_id || need_new_split) {
|
||||||
|
split->i_end = i;
|
||||||
|
i_split++;
|
||||||
|
if (i_split >= sched->splits_capacity) {
|
||||||
|
sched->splits_capacity *= 2;
|
||||||
|
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
|
||||||
|
GGML_ASSERT(sched->splits != NULL);
|
||||||
|
}
|
||||||
|
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
|
||||||
|
split = &sched->splits[i_split];
|
||||||
|
split->backend_id = node_backend_id;
|
||||||
|
split->i_start = i;
|
||||||
|
split->n_inputs = 0;
|
||||||
|
cur_backend_id = node_backend_id;
|
||||||
}
|
}
|
||||||
|
|
||||||
// find inputs that are not on the same backend
|
// find inputs that are not on the same backend
|
||||||
@ -1421,10 +1479,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
int src_backend_id = tensor_backend_id(src);
|
const int src_backend_id = tensor_backend_id(src);
|
||||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||||
|
|
||||||
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||||
size_t id = hash_id(src);
|
size_t id = hash_id(src);
|
||||||
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
||||||
ggml_backend_t backend = sched->backends[src_backend_id];
|
ggml_backend_t backend = sched->backends[src_backend_id];
|
||||||
@ -1441,7 +1499,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||||
}
|
}
|
||||||
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
||||||
tensor_backend_id(tensor_copy) = src_backend_id;
|
|
||||||
SET_CAUSE(tensor_copy, "4.cpy");
|
SET_CAUSE(tensor_copy, "4.cpy");
|
||||||
}
|
}
|
||||||
int n_graph_inputs = sched->n_graph_inputs++;
|
int n_graph_inputs = sched->n_graph_inputs++;
|
||||||
@ -1450,9 +1507,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (src_backend_id != tensor_backend_id) {
|
if (src_backend_id != node_backend_id) {
|
||||||
// create a copy of the input in the split's backend
|
// create a copy of the input in the split's backend
|
||||||
size_t id = hash_id(src);
|
const size_t id = hash_id(src);
|
||||||
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
||||||
ggml_backend_t backend = sched->backends[cur_backend_id];
|
ggml_backend_t backend = sched->backends[cur_backend_id];
|
||||||
for (int c = 0; c < sched->n_copies; c++) {
|
for (int c = 0; c < sched->n_copies; c++) {
|
||||||
@ -1463,76 +1520,42 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||||
}
|
}
|
||||||
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
||||||
tensor_backend_id(tensor_copy) = cur_backend_id;
|
|
||||||
SET_CAUSE(tensor_copy, "4.cpy");
|
SET_CAUSE(tensor_copy, "4.cpy");
|
||||||
}
|
}
|
||||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
int n_inputs = split->n_inputs++;
|
||||||
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
||||||
sched->splits[cur_split].inputs[n_inputs] = src;
|
split->inputs[n_inputs] = src;
|
||||||
}
|
}
|
||||||
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
sched->splits[cur_split].i_end = graph->n_nodes;
|
split->i_end = graph->n_nodes;
|
||||||
sched->n_splits = cur_split + 1;
|
sched->n_splits = i_split + 1;
|
||||||
}
|
}
|
||||||
#ifdef DEBUG_PASS4
|
#ifdef DEBUG_PASS4
|
||||||
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef NDEBUG
|
|
||||||
// sanity check: all sources should have the same backend as the node
|
|
||||||
for (int i = 0; i < graph->n_nodes; i++) {
|
|
||||||
struct ggml_tensor * node = graph->nodes[i];
|
|
||||||
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
|
||||||
if (tensor_backend == NULL) {
|
|
||||||
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
|
|
||||||
}
|
|
||||||
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
|
|
||||||
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
|
|
||||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
|
||||||
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
|
|
||||||
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
|
|
||||||
}
|
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
||||||
struct ggml_tensor * src = node->src[j];
|
|
||||||
if (src == NULL) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
|
|
||||||
if (src_backend != tensor_backend /* && src_backend != NULL */) {
|
|
||||||
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
|
||||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
|
||||||
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
|
|
||||||
}
|
|
||||||
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
|
|
||||||
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
|
|
||||||
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
|
|
||||||
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
|
|
||||||
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fflush(stderr);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// create copies of the graph for each split
|
// create copies of the graph for each split
|
||||||
// TODO: avoid this copy
|
// TODO: avoid this copy
|
||||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
|
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
|
||||||
for (int i = 0; i < sched->n_splits; i++) {
|
for (int i = 0; i < sched->n_splits; i++) {
|
||||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||||
|
|
||||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||||
for (int j = 0; j < split->n_inputs; j++) {
|
for (int j = 0; j < split->n_inputs; j++) {
|
||||||
|
assert(graph_copy->size > (graph_copy->n_nodes + 1));
|
||||||
|
|
||||||
struct ggml_tensor * input = split->inputs[j];
|
struct ggml_tensor * input = split->inputs[j];
|
||||||
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
|
const size_t input_id = hash_id(input);
|
||||||
|
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
|
||||||
|
|
||||||
// add a dependency to the input source so that it is not freed before the copy is done
|
// add a dependency to the input source so that it is not freed before the copy is done
|
||||||
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
||||||
input_dep->src[0] = input;
|
input_dep->src[0] = input;
|
||||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
|
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
|
||||||
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
||||||
|
|
||||||
// add a dependency to the input copy so that it is allocated at the start of the split
|
// add a dependency to the input copy so that it is allocated at the start of the split
|
||||||
@ -1541,6 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (int j = split->i_start; j < split->i_end; j++) {
|
for (int j = split->i_start; j < split->i_end; j++) {
|
||||||
|
assert(graph_copy->size > graph_copy->n_nodes);
|
||||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
||||||
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
||||||
}
|
}
|
||||||
@ -1625,13 +1649,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
|||||||
}
|
}
|
||||||
ggml_backend_tensor_copy(input, input_cpy);
|
ggml_backend_tensor_copy(input, input_cpy);
|
||||||
} else {
|
} else {
|
||||||
|
// wait for the split backend to finish using the input before overwriting it
|
||||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||||
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
|
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
|
||||||
} else {
|
} else {
|
||||||
ggml_backend_synchronize(split_backend);
|
ggml_backend_synchronize(split_backend);
|
||||||
ggml_backend_synchronize(input_backend);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
|
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1701,17 +1724,21 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
|||||||
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
||||||
|
|
||||||
// initialize hash table
|
// initialize hash table
|
||||||
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
|
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||||
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
||||||
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
||||||
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
|
|
||||||
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
|
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||||
|
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size);
|
||||||
|
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size);
|
||||||
|
|
||||||
sched->n_backends = n_backends;
|
sched->n_backends = n_backends;
|
||||||
|
|
||||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||||
|
|
||||||
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
|
const int initial_splits_capacity = 16;
|
||||||
|
sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity);
|
||||||
|
sched->splits_capacity = initial_splits_capacity;
|
||||||
|
|
||||||
for (int b = 0; b < n_backends; b++) {
|
for (int b = 0; b < n_backends; b++) {
|
||||||
sched->backends[b] = backends[b];
|
sched->backends[b] = backends[b];
|
||||||
@ -1742,6 +1769,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
|||||||
}
|
}
|
||||||
ggml_gallocr_free(sched->galloc);
|
ggml_gallocr_free(sched->galloc);
|
||||||
ggml_free(sched->ctx);
|
ggml_free(sched->ctx);
|
||||||
|
free(sched->splits);
|
||||||
free(sched->hash_set.keys);
|
free(sched->hash_set.keys);
|
||||||
free(sched->tensor_backend_id);
|
free(sched->tensor_backend_id);
|
||||||
free(sched->tensor_copies);
|
free(sched->tensor_copies);
|
||||||
@ -1762,6 +1790,8 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||||
|
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
|
||||||
|
|
||||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||||
|
|
||||||
// TODO: extract this to a separate function
|
// TODO: extract this to a separate function
|
||||||
@ -1776,7 +1806,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
|||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
|
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
|
||||||
|
|
||||||
ggml_backend_sched_split_graph(sched, graph);
|
ggml_backend_sched_split_graph(sched, graph);
|
||||||
|
|
||||||
|
@ -70,11 +70,11 @@ extern "C" {
|
|||||||
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
|
|
||||||
GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
|
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
||||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
// tensor copy between different backends
|
// tensor copy between different backends
|
||||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
259
ggml-cuda.cu
259
ggml-cuda.cu
@ -82,6 +82,10 @@
|
|||||||
#define cudaGetDeviceProperties hipGetDeviceProperties
|
#define cudaGetDeviceProperties hipGetDeviceProperties
|
||||||
#define cudaGetErrorString hipGetErrorString
|
#define cudaGetErrorString hipGetErrorString
|
||||||
#define cudaGetLastError hipGetLastError
|
#define cudaGetLastError hipGetLastError
|
||||||
|
#define cudaHostRegister hipHostRegister
|
||||||
|
#define cudaHostRegisterPortable hipHostRegisterPortable
|
||||||
|
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
||||||
|
#define cudaHostUnregister hipHostUnregister
|
||||||
#define cudaLaunchHostFunc hipLaunchHostFunc
|
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||||
#ifdef GGML_HIP_UMA
|
#ifdef GGML_HIP_UMA
|
||||||
#define cudaMalloc hipMallocManaged
|
#define cudaMalloc hipMallocManaged
|
||||||
@ -7787,11 +7791,7 @@ struct cuda_pool_alloc {
|
|||||||
|
|
||||||
static bool g_cublas_loaded = false;
|
static bool g_cublas_loaded = false;
|
||||||
|
|
||||||
GGML_CALL bool ggml_cublas_loaded(void) {
|
static void ggml_init_cublas() {
|
||||||
return g_cublas_loaded;
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_CALL void ggml_init_cublas() {
|
|
||||||
static bool initialized = false;
|
static bool initialized = false;
|
||||||
|
|
||||||
if (!initialized) {
|
if (!initialized) {
|
||||||
@ -7880,7 +7880,7 @@ GGML_CALL void ggml_init_cublas() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
|
static void * ggml_cuda_host_malloc(size_t size) {
|
||||||
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
@ -7890,7 +7890,7 @@ GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
|
|||||||
if (err != cudaSuccess) {
|
if (err != cudaSuccess) {
|
||||||
// clear the error
|
// clear the error
|
||||||
cudaGetLastError();
|
cudaGetLastError();
|
||||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
||||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
@ -7898,7 +7898,7 @@ GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
|
|||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL void ggml_cuda_host_free(void * ptr) {
|
static void ggml_cuda_host_free(void * ptr) {
|
||||||
CUDA_CHECK(cudaFreeHost(ptr));
|
CUDA_CHECK(cudaFreeHost(ptr));
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -9036,21 +9036,13 @@ static void ggml_cuda_op_soft_max(
|
|||||||
|
|
||||||
// positions tensor
|
// positions tensor
|
||||||
float * src2_dd = nullptr;
|
float * src2_dd = nullptr;
|
||||||
cuda_pool_alloc<float> src2_f;
|
|
||||||
|
|
||||||
ggml_tensor * src2 = dst->src[2];
|
ggml_tensor * src2 = dst->src[2];
|
||||||
const bool use_src2 = src2 != nullptr;
|
const bool use_src2 = src2 != nullptr;
|
||||||
|
|
||||||
if (use_src2) {
|
if (use_src2) {
|
||||||
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
|
|
||||||
|
|
||||||
if (src2_on_device) {
|
|
||||||
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||||
src2_dd = (float *) src2_extra->data_device[g_main_device];
|
src2_dd = (float *) src2_extra->data_device[g_main_device];
|
||||||
} else {
|
|
||||||
src2_dd = src2_f.alloc(ggml_nelements(src2));
|
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
|
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
|
||||||
@ -9107,55 +9099,24 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
||||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
|
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
|
||||||
|
|
||||||
// dd = data device
|
// dd = data device
|
||||||
float * src0_ddf = nullptr;
|
float * src0_ddf = nullptr;
|
||||||
float * src1_ddf = nullptr;
|
float * src1_ddf = nullptr;
|
||||||
float * dst_ddf = nullptr;
|
float * dst_ddf = nullptr;
|
||||||
|
|
||||||
cuda_pool_alloc<float> src0_f;
|
|
||||||
cuda_pool_alloc<float> src1_f;
|
|
||||||
cuda_pool_alloc<float> dst_f;
|
|
||||||
|
|
||||||
ggml_cuda_set_device(g_main_device);
|
ggml_cuda_set_device(g_main_device);
|
||||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||||
|
|
||||||
if (src0_on_device) {
|
|
||||||
src0_ddf = (float *) src0_extra->data_device[g_main_device];
|
src0_ddf = (float *) src0_extra->data_device[g_main_device];
|
||||||
} else {
|
|
||||||
src0_ddf = src0_f.alloc(ggml_nelements(src0));
|
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (use_src1) {
|
if (use_src1) {
|
||||||
if (src1_on_device) {
|
|
||||||
src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
||||||
} else {
|
|
||||||
src1_ddf = src1_f.alloc(ggml_nelements(src1));
|
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
if (dst_on_device) {
|
|
||||||
dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||||
} else {
|
|
||||||
dst_ddf = dst_f.alloc(ggml_nelements(dst));
|
|
||||||
}
|
|
||||||
|
|
||||||
// do the computation
|
// do the computation
|
||||||
op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
|
||||||
// copy dst to host if necessary
|
|
||||||
if (!dst_on_device) {
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_set_peer_access(const int n_tokens) {
|
static void ggml_cuda_set_peer_access(const int n_tokens) {
|
||||||
@ -9251,7 +9212,6 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
||||||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||||||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||||||
|
|
||||||
@ -9322,13 +9282,13 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
|
|
||||||
used_devices++;
|
used_devices++;
|
||||||
|
|
||||||
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
const bool src1_on_device = id == g_main_device; // TODO: check from buffer
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
const bool dst_on_device = id == g_main_device;
|
||||||
|
|
||||||
ggml_cuda_set_device(id);
|
ggml_cuda_set_device(id);
|
||||||
cudaStream_t stream = g_cudaStreams[id][0];
|
cudaStream_t stream = g_cudaStreams[id][0];
|
||||||
|
|
||||||
if (src0_on_device && src0_is_contiguous) {
|
if (src0_is_contiguous) {
|
||||||
dev[id].src0_dd = (char *) src0_extra->data_device[id];
|
dev[id].src0_dd = (char *) src0_extra->data_device[id];
|
||||||
} else {
|
} else {
|
||||||
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0));
|
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0));
|
||||||
@ -9374,8 +9334,8 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
const bool src1_on_device = id == g_main_device; // TODO: check from buffer
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
const bool dst_on_device = id == g_main_device;
|
||||||
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
|
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
|
||||||
|
|
||||||
ggml_cuda_set_device(id);
|
ggml_cuda_set_device(id);
|
||||||
@ -9400,12 +9360,12 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
|
|
||||||
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
||||||
// in that case an offset on dst_ddf_i is needed
|
// in that case an offset on dst_ddf_i is needed
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
|
if (id == g_main_device) {
|
||||||
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
|
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy src0, src1 to device if necessary
|
// copy src0, src1 to device if necessary
|
||||||
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
|
if (src1_is_contiguous) {
|
||||||
if (id != g_main_device) {
|
if (id != g_main_device) {
|
||||||
if (convert_src1_to_q8_1) {
|
if (convert_src1_to_q8_1) {
|
||||||
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
|
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
|
||||||
@ -9418,19 +9378,19 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
src1_ncols*ne10*sizeof(float), stream));
|
src1_ncols*ne10*sizeof(float), stream));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
|
} else if (src1_on_device && !src1_is_contiguous) {
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
||||||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
|
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
|
||||||
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
}
|
}
|
||||||
|
|
||||||
if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
|
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -9441,17 +9401,7 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
|
|
||||||
// copy dst to host or other device if necessary
|
// copy dst to host or other device if necessary
|
||||||
if (!dst_on_device) {
|
if (!dst_on_device) {
|
||||||
void * dst_off_device;
|
void * dst_off_device = dst_extra->data_device[g_main_device];
|
||||||
cudaMemcpyKind kind;
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
dst_off_device = dst->data;
|
|
||||||
kind = cudaMemcpyDeviceToHost;
|
|
||||||
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
|
|
||||||
dst_off_device = dst_extra->data_device[g_main_device];
|
|
||||||
kind = cudaMemcpyDeviceToDevice;
|
|
||||||
} else {
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
}
|
|
||||||
if (split) {
|
if (split) {
|
||||||
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
||||||
// dst is NOT transposed.
|
// dst is NOT transposed.
|
||||||
@ -9462,7 +9412,6 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
||||||
dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
|
dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
|
||||||
#if !defined(GGML_USE_HIPBLAS)
|
#if !defined(GGML_USE_HIPBLAS)
|
||||||
if (kind == cudaMemcpyDeviceToDevice) {
|
|
||||||
// cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
|
// cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
|
||||||
cudaMemcpy3DPeerParms p = {};
|
cudaMemcpy3DPeerParms p = {};
|
||||||
p.dstDevice = g_main_device;
|
p.dstDevice = g_main_device;
|
||||||
@ -9471,19 +9420,18 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
|
p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
|
||||||
p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
|
p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
|
||||||
CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
|
CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
|
||||||
} else
|
#else
|
||||||
#endif
|
// HIP does not support cudaMemcpy3DPeerAsync or vmm pools
|
||||||
{
|
|
||||||
CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
|
CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
|
||||||
dst_dd_i, row_diff*sizeof(float),
|
dst_dd_i, row_diff*sizeof(float),
|
||||||
row_diff*sizeof(float), src1_ncols,
|
row_diff*sizeof(float), src1_ncols,
|
||||||
kind, stream));
|
cudaMemcpyDeviceToDevice, stream));
|
||||||
}
|
#endif
|
||||||
} else {
|
} else {
|
||||||
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
||||||
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
||||||
dhf_dst_i += src1_col_0*ne0;
|
dhf_dst_i += src1_col_0*ne0;
|
||||||
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream));
|
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -9510,11 +9458,6 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
ggml_cuda_set_device(g_main_device);
|
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -9599,36 +9542,19 @@ static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
|||||||
static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
|
|
||||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
|
||||||
|
|
||||||
// dd = data device
|
// dd = data device
|
||||||
float * src0_ddf = nullptr;
|
float * src0_ddf = nullptr;
|
||||||
float * src1_ddf = nullptr;
|
float * src1_ddf = nullptr;
|
||||||
float * dst_ddf = nullptr;
|
float * dst_ddf = nullptr;
|
||||||
|
|
||||||
cuda_pool_alloc<float> dst_f;
|
|
||||||
|
|
||||||
ggml_cuda_set_device(g_main_device);
|
ggml_cuda_set_device(g_main_device);
|
||||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||||
|
|
||||||
if (dst_on_device) {
|
|
||||||
dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||||
} else {
|
|
||||||
dst_ddf = dst_f.alloc(ggml_nelements(dst));
|
|
||||||
}
|
|
||||||
|
|
||||||
// do the computation
|
// do the computation
|
||||||
ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
|
||||||
// copy dst to host if necessary
|
|
||||||
if (!dst_on_device) {
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -9639,21 +9565,6 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
|
|||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
||||||
if (!g_cublas_loaded) return false;
|
|
||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
|
||||||
|
|
||||||
const int64_t ne0 = dst->ne[0];
|
|
||||||
const int64_t ne1 = dst->ne[1];
|
|
||||||
|
|
||||||
// TODO: find the optimal values for these
|
|
||||||
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
||||||
src1->type == GGML_TYPE_F32 &&
|
|
||||||
dst->type == GGML_TYPE_F32 &&
|
|
||||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||||
@ -9891,11 +9802,6 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
const bool all_on_device =
|
|
||||||
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
|
|
||||||
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
|
|
||||||
( dst->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||||
|
|
||||||
int64_t min_compute_capability = INT_MAX;
|
int64_t min_compute_capability = INT_MAX;
|
||||||
@ -9972,13 +9878,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
|
|||||||
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
||||||
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
||||||
|
|
||||||
if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
||||||
// KQ single-batch
|
// KQ single-batch
|
||||||
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
|
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
|
||||||
} else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
} else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
||||||
// KQV single-batch
|
// KQV single-batch
|
||||||
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
|
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
|
||||||
} else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
} else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
||||||
// KQ + KQV multi-batch
|
// KQ + KQV multi-batch
|
||||||
ggml_cuda_mul_mat_batched_cublas(src0, src1, dst);
|
ggml_cuda_mul_mat_batched_cublas(src0, src1, dst);
|
||||||
} else if (use_dequantize_mul_mat_vec) {
|
} else if (use_dequantize_mul_mat_vec) {
|
||||||
@ -10178,6 +10084,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
ggml_cuda_mul_mat_id_cublas(dst);
|
ggml_cuda_mul_mat_id_cublas(dst);
|
||||||
// TODO: mmq/mmv support
|
// TODO: mmq/mmv support
|
||||||
#endif
|
#endif
|
||||||
|
cudaStream_t stream = g_cudaStreams[g_main_device][0];
|
||||||
|
|
||||||
const size_t nb11 = src1->nb[1];
|
const size_t nb11 = src1->nb[1];
|
||||||
const size_t nb1 = dst->nb[1];
|
const size_t nb1 = dst->nb[1];
|
||||||
@ -10187,16 +10094,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
||||||
|
|
||||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||||
|
|
||||||
cudaStream_t stream = g_cudaStreams[g_main_device][0];
|
|
||||||
|
|
||||||
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
|
|
||||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||||
} else {
|
|
||||||
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
|
|
||||||
}
|
|
||||||
|
|
||||||
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
|
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
|
||||||
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
|
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
|
||||||
@ -10213,20 +10113,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
src1_row.extra = &src1_row_extra;
|
src1_row.extra = &src1_row_extra;
|
||||||
dst_row.extra = &dst_row_extra;
|
dst_row.extra = &dst_row_extra;
|
||||||
|
|
||||||
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
char * src1_original = (char *) src1_extra->data_device[g_main_device];
|
||||||
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
|
char * dst_original = (char *) dst_extra->data_device[g_main_device];
|
||||||
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
|
||||||
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
|
|
||||||
|
|
||||||
if (src1->ne[1] == 1) {
|
if (src1->ne[1] == 1) {
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||||
//int32_t row_id;
|
|
||||||
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
|
||||||
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
|
||||||
|
|
||||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||||
|
|
||||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||||
@ -10248,11 +10139,6 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
|
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
|
||||||
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
|
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
|
||||||
|
|
||||||
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
|
||||||
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
|
|
||||||
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
|
||||||
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
|
|
||||||
|
|
||||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||||
|
|
||||||
@ -10267,7 +10153,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||||
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
|
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
|
||||||
nb11, src1_kind, stream));
|
nb11, cudaMemcpyDeviceToDevice, stream));
|
||||||
num_src1_rows++;
|
num_src1_rows++;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -10299,15 +10185,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||||
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
|
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
|
||||||
nb1, dst_kind, stream));
|
nb1, cudaMemcpyDeviceToDevice, stream));
|
||||||
num_src1_rows++;
|
num_src1_rows++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -10435,7 +10317,7 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl
|
|||||||
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
|
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL static void ggml_cuda_set_main_device(const int main_device) {
|
static void ggml_cuda_set_main_device(const int main_device) {
|
||||||
if (main_device >= g_device_count) {
|
if (main_device >= g_device_count) {
|
||||||
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
|
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
|
||||||
main_device, g_device_count, g_main_device);
|
main_device, g_device_count, g_main_device);
|
||||||
@ -10450,18 +10332,9 @@ GGML_CALL static void ggml_cuda_set_main_device(const int main_device) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
static bool ggml_cuda_compute_forward(struct ggml_tensor * tensor) {
|
||||||
if (!g_cublas_loaded) return false;
|
if (!g_cublas_loaded) return false;
|
||||||
|
|
||||||
ggml_cuda_func_t func;
|
|
||||||
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
|
||||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
|
||||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tensor->op == GGML_OP_MUL_MAT) {
|
if (tensor->op == GGML_OP_MUL_MAT) {
|
||||||
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
@ -10471,6 +10344,8 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ggml_cuda_func_t func;
|
||||||
|
|
||||||
switch (tensor->op) {
|
switch (tensor->op) {
|
||||||
case GGML_OP_REPEAT:
|
case GGML_OP_REPEAT:
|
||||||
func = ggml_cuda_repeat;
|
func = ggml_cuda_repeat;
|
||||||
@ -10548,15 +10423,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||||||
func = ggml_cuda_rms_norm;
|
func = ggml_cuda_rms_norm;
|
||||||
break;
|
break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
func = ggml_cuda_mul_mat;
|
func = ggml_cuda_mul_mat;
|
||||||
break;
|
break;
|
||||||
case GGML_OP_MUL_MAT_ID:
|
case GGML_OP_MUL_MAT_ID:
|
||||||
if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
func = ggml_cuda_mul_mat_id;
|
func = ggml_cuda_mul_mat_id;
|
||||||
break;
|
break;
|
||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
@ -10613,17 +10482,11 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||||||
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
|
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params->ith != 0) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
func(tensor->src[0], tensor->src[1], tensor);
|
func(tensor->src[0], tensor->src[1], tensor);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL int ggml_cuda_get_device_count() {
|
static int ggml_cuda_get_device_count() {
|
||||||
int device_count;
|
int device_count;
|
||||||
if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
|
if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
|
||||||
return 0;
|
return 0;
|
||||||
@ -10631,7 +10494,7 @@ GGML_CALL int ggml_cuda_get_device_count() {
|
|||||||
return device_count;
|
return device_count;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
|
static void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
|
||||||
cudaDeviceProp prop;
|
cudaDeviceProp prop;
|
||||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
||||||
snprintf(description, description_size, "%s", prop.name);
|
snprintf(description, description_size, "%s", prop.name);
|
||||||
@ -10736,6 +10599,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
|||||||
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||||
|
|
||||||
if (padded_size > original_size && tensor->view_src == nullptr) {
|
if (padded_size > original_size && tensor->view_src == nullptr) {
|
||||||
|
ggml_cuda_set_device(ctx->device);
|
||||||
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
|
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -10873,6 +10737,8 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
||||||
|
ggml_init_cublas();
|
||||||
|
|
||||||
// FIXME: this is not thread safe
|
// FIXME: this is not thread safe
|
||||||
if (device >= ggml_backend_cuda_get_device_count()) {
|
if (device >= ggml_backend_cuda_get_device_count()) {
|
||||||
return nullptr;
|
return nullptr;
|
||||||
@ -11157,6 +11023,8 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
|
|||||||
};
|
};
|
||||||
|
|
||||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
|
||||||
|
ggml_init_cublas();
|
||||||
|
|
||||||
// FIXME: this is not thread safe
|
// FIXME: this is not thread safe
|
||||||
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
|
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
|
||||||
|
|
||||||
@ -11348,9 +11216,6 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
|
|
||||||
ggml_cuda_set_main_device(cuda_ctx->device);
|
ggml_cuda_set_main_device(cuda_ctx->device);
|
||||||
|
|
||||||
ggml_compute_params params = {};
|
|
||||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
|
||||||
params.ith = 0;
|
|
||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
|
|
||||||
@ -11372,7 +11237,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
bool ok = ggml_cuda_compute_forward(¶ms, node);
|
bool ok = ggml_cuda_compute_forward(node);
|
||||||
if (!ok) {
|
if (!ok) {
|
||||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||||
}
|
}
|
||||||
@ -11509,6 +11374,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||||||
UNUSED(backend);
|
UNUSED(backend);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||||
|
const int min_batch_size = 32;
|
||||||
|
|
||||||
|
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
|
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
|
||||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||||
|
|
||||||
@ -11571,6 +11444,7 @@ static ggml_backend_i ggml_backend_cuda_interface = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
||||||
|
/* .offload_op = */ ggml_backend_cuda_offload_op,
|
||||||
/* .event_new = */ ggml_backend_cuda_event_new,
|
/* .event_new = */ ggml_backend_cuda_event_new,
|
||||||
/* .event_free = */ ggml_backend_cuda_event_free,
|
/* .event_free = */ ggml_backend_cuda_event_free,
|
||||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||||
@ -11584,7 +11458,7 @@ static ggml_guid_t ggml_backend_cuda_guid() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
||||||
ggml_init_cublas(); // TODO: remove from ggml.c
|
ggml_init_cublas();
|
||||||
|
|
||||||
if (device < 0 || device >= ggml_cuda_get_device_count()) {
|
if (device < 0 || device >= ggml_cuda_get_device_count()) {
|
||||||
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
|
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
|
||||||
@ -11627,6 +11501,31 @@ GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, si
|
|||||||
CUDA_CHECK(cudaMemGetInfo(free, total));
|
CUDA_CHECK(cudaMemGetInfo(free, total));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
||||||
|
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||||
|
if (err != cudaSuccess) {
|
||||||
|
// clear the error
|
||||||
|
cudaGetLastError();
|
||||||
|
|
||||||
|
fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
||||||
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
||||||
|
cudaError_t err = cudaHostUnregister(buffer);
|
||||||
|
if (err != cudaSuccess) {
|
||||||
|
// clear the error
|
||||||
|
cudaGetLastError();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// backend registry
|
// backend registry
|
||||||
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
|
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
|
||||||
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
|
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
|
||||||
|
21
ggml-cuda.h
21
ggml-cuda.h
@ -17,29 +17,17 @@ extern "C" {
|
|||||||
|
|
||||||
#define GGML_CUDA_MAX_DEVICES 16
|
#define GGML_CUDA_MAX_DEVICES 16
|
||||||
|
|
||||||
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
|
|
||||||
GGML_API GGML_CALL void ggml_init_cublas(void);
|
|
||||||
|
|
||||||
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
|
|
||||||
GGML_API GGML_CALL bool ggml_cublas_loaded(void);
|
|
||||||
|
|
||||||
GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
|
|
||||||
GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr);
|
|
||||||
|
|
||||||
GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
|
||||||
GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
GGML_API GGML_CALL int ggml_cuda_get_device_count(void);
|
|
||||||
GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
|
||||||
|
|
||||||
// backend API
|
// backend API
|
||||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
||||||
|
|
||||||
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||||
|
|
||||||
|
// device buffer
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||||
|
|
||||||
// split tensor buffer that splits matrices by rows across multiple devices
|
// split tensor buffer that splits matrices by rows across multiple devices
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||||
|
|
||||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||||
|
|
||||||
@ -47,6 +35,9 @@ GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
|
|||||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||||
|
|
||||||
|
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||||
|
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -1951,6 +1951,7 @@ static struct ggml_backend_i kompute_backend_i = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
@ -2837,6 +2837,7 @@ static struct ggml_backend_i ggml_backend_metal_i = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_metal_supports_op,
|
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
@ -17390,6 +17390,7 @@ static ggml_backend_i ggml_backend_sycl_interface = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
|
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_sycl_supports_op,
|
/* .supports_op = */ ggml_backend_sycl_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
@ -5699,6 +5699,7 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
|||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_compute = */ ggml_backend_vk_graph_compute,
|
/* .graph_compute = */ ggml_backend_vk_graph_compute,
|
||||||
/* .supports_op = */ ggml_backend_vk_supports_op,
|
/* .supports_op = */ ggml_backend_vk_supports_op,
|
||||||
|
/* .offload_op = */ NULL,
|
||||||
/* .event_new = */ NULL,
|
/* .event_new = */ NULL,
|
||||||
/* .event_free = */ NULL,
|
/* .event_free = */ NULL,
|
||||||
/* .event_record = */ NULL,
|
/* .event_record = */ NULL,
|
||||||
|
19
ggml.c
19
ggml.c
@ -282,8 +282,6 @@ inline static void * ggml_calloc(size_t num, size_t size) {
|
|||||||
#else
|
#else
|
||||||
#include <cblas.h>
|
#include <cblas.h>
|
||||||
#endif
|
#endif
|
||||||
#elif defined(GGML_USE_CUBLAS)
|
|
||||||
#include "ggml-cuda.h"
|
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
#include "ggml-opencl.h"
|
#include "ggml-opencl.h"
|
||||||
#elif defined(GGML_USE_VULKAN)
|
#elif defined(GGML_USE_VULKAN)
|
||||||
@ -2640,9 +2638,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|||||||
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CLBLAST)
|
||||||
ggml_init_cublas();
|
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
|
||||||
ggml_cl_init();
|
ggml_cl_init();
|
||||||
#elif defined(GGML_USE_VULKAN)
|
#elif defined(GGML_USE_VULKAN)
|
||||||
ggml_vk_init_cpu_assist();
|
ggml_vk_init_cpu_assist();
|
||||||
@ -11105,7 +11101,6 @@ static void ggml_compute_forward_out_prod_f32(
|
|||||||
// nb01 >= nb00 - src0 is not transposed
|
// nb01 >= nb00 - src0 is not transposed
|
||||||
// compute by src0 rows
|
// compute by src0 rows
|
||||||
|
|
||||||
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
|
|
||||||
// TODO: #if defined(GGML_USE_CLBLAST)
|
// TODO: #if defined(GGML_USE_CLBLAST)
|
||||||
|
|
||||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||||
@ -11305,7 +11300,6 @@ static void ggml_compute_forward_out_prod_q_f32(
|
|||||||
// nb01 >= nb00 - src0 is not transposed
|
// nb01 >= nb00 - src0 is not transposed
|
||||||
// compute by src0 rows
|
// compute by src0 rows
|
||||||
|
|
||||||
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
|
|
||||||
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||||
@ -16051,14 +16045,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
#if defined(GGML_USE_VULKAN)
|
||||||
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
|
|
||||||
if (skip_cpu) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
|
||||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
|
||||||
#elif defined(GGML_USE_VULKAN)
|
|
||||||
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
|
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
|
||||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||||
if (skip_cpu) {
|
if (skip_cpu) {
|
||||||
@ -16070,7 +16057,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
}
|
}
|
||||||
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
||||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_VULKAN
|
||||||
|
|
||||||
#ifdef GGML_USE_SYCL
|
#ifdef GGML_USE_SYCL
|
||||||
bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
|
bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
|
||||||
|
27
llama.cpp
27
llama.cpp
@ -2040,6 +2040,11 @@ struct llama_model {
|
|||||||
ggml_free(ctx);
|
ggml_free(ctx);
|
||||||
}
|
}
|
||||||
for (ggml_backend_buffer_t buf : bufs) {
|
for (ggml_backend_buffer_t buf : bufs) {
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
|
||||||
|
ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
ggml_backend_buffer_free(buf);
|
ggml_backend_buffer_free(buf);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -5033,6 +5038,13 @@ static bool llm_load_tensors(
|
|||||||
size_t first, last;
|
size_t first, last;
|
||||||
ml.get_mapping_range(&first, &last, ctx);
|
ml.get_mapping_range(&first, &last, ctx);
|
||||||
buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
|
buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
if (n_layer >= n_gpu_layers) {
|
||||||
|
ggml_backend_cuda_register_host_buffer(
|
||||||
|
ggml_backend_buffer_get_base(buf),
|
||||||
|
ggml_backend_buffer_get_size(buf));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
|
else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
|
||||||
@ -8231,7 +8243,6 @@ struct llm_build_context {
|
|||||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||||
model.layers[il].wo, model.layers[il].bo,
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
cb(cur, "kqv_out", il);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
@ -8601,7 +8612,9 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
|
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
|
||||||
// to fix this, we assign the norm layer manually to the backend of its layer
|
// FIXME: fix in ggml_backend_sched
|
||||||
|
const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
|
||||||
|
if (batch.n_tokens < 32 || full_offload) {
|
||||||
if (il != -1 && strcmp(name, "norm") == 0) {
|
if (il != -1 && strcmp(name, "norm") == 0) {
|
||||||
for (auto * backend : lctx.backends) {
|
for (auto * backend : lctx.backends) {
|
||||||
if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
|
if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
|
||||||
@ -8610,6 +8623,7 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct ggml_cgraph * result = NULL;
|
struct ggml_cgraph * result = NULL;
|
||||||
@ -13107,9 +13121,8 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
ctx->backends.push_back(ctx->backend_metal);
|
ctx->backends.push_back(ctx->backend_metal);
|
||||||
}
|
}
|
||||||
#elif defined(GGML_USE_CUBLAS)
|
#elif defined(GGML_USE_CUBLAS)
|
||||||
if (model->n_gpu_layers > 0) {
|
|
||||||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
|
||||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||||
|
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||||
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
|
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
|
||||||
if (backend == nullptr) {
|
if (backend == nullptr) {
|
||||||
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
|
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
|
||||||
@ -13129,7 +13142,6 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
ctx->backends.push_back(backend);
|
ctx->backends.push_back(backend);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
#elif defined(GGML_USE_VULKAN)
|
#elif defined(GGML_USE_VULKAN)
|
||||||
if (model->n_gpu_layers > 0) {
|
if (model->n_gpu_layers > 0) {
|
||||||
for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
|
for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
|
||||||
@ -13285,14 +13297,17 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
ggml_backend_t backend = ctx->backends[i];
|
ggml_backend_t backend = ctx->backends[i];
|
||||||
ggml_backend_buffer_type_t buft = backend_buft[i];
|
ggml_backend_buffer_type_t buft = backend_buft[i];
|
||||||
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
|
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
|
||||||
|
if (size > 1) {
|
||||||
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
|
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
|
||||||
ggml_backend_buft_name(buft),
|
ggml_backend_buft_name(buft),
|
||||||
size / 1024.0 / 1024.0);
|
size / 1024.0 / 1024.0);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// note: the number of splits during measure is higher than during inference due to the kv shift
|
// note: the number of splits during measure is higher than during inference due to the kv shift
|
||||||
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
|
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
|
||||||
LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits);
|
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
|
||||||
|
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user