1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-23 09:59:18 +01:00

cuda : CUDA Graph Compute Function Refactor (precursor for performance improvements) ()

* Refactor: Moves cuda graph executable update step to separate function.

* Refactor: Moves cuda graph update check to separate function.

* Refactor: Moves cuda graph maintenance (update or adjusting copy parameters) to separate function for improved readability.

* Fix: Adds missing reference to maintain_cuda_graph() definition.

* Refactor: Improves structure and abstractions by moving CUDA graph evaluation and capture to its own function.

* Refactor: Moves node graph checks and copy ops into individual function for improved readability.

* Refactor: Removes code permanently excluded from compilation to increase readability.

* Style: Adds missing newline

* Style: Consolidates several neighboring '#ifdef USE_CUDA_GRAPH' into a single one

* Refactor: Makes 'cuda_graph_update_required' a local variable

* remove double lines between functions

---------

Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Andreas Kieslinger 2025-01-13 16:45:53 +01:00 committed by GitHub
parent a29f0870d4
commit 39509fb082
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -2289,6 +2289,66 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
}
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) {
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
}
if (node->op == GGML_OP_MUL_MAT_ID) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
#endif
}
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
// disable CUDA graphs for batch size > 1 for now.
// Changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (node->op == GGML_OP_CPY) {
// store the copy op parameter which changes with each token.
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
} else {
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
}
}
}
if (!use_cuda_graph) {
break;
}
}
return use_cuda_graph;
}
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
graph_node_properties->node_address = node->data;
graph_node_properties->node_op = node->op;
@ -2339,149 +2399,105 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
return true;
}
#endif
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) {
ggml_cuda_set_device(cuda_ctx->device);
if (cuda_graph_update_required) {
// Extract nodes from graph
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.clear();
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.clear();
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
if (cuda_ctx->cuda_graph->num_nodes > 0) {
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
bool cuda_graph_update_required = false;
// vector of pointers to CUDA cpy kernels, which are required to identify
// kernel parameters which need updated in the graph for each token
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
}
if (node->op == GGML_OP_MUL_MAT_ID) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
#endif
}
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
// disable CUDA graphs for batch size > 1 for now.
// Changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (node->op == GGML_OP_CPY) {
// store the copy op parameter which changes with each token.
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
} else {
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
// Loop over nodes, and extract kernel parameters from each node
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
cudaGraphNodeType node_type;
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
if (node_type == cudaGraphNodeTypeKernel) {
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
if (stat == cudaErrorInvalidDeviceFunction) {
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
// We don't need to update blas nodes, so clear error and move on.
cudaGetLastError();
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
}
if (!use_cuda_graph) {
break;
}
} else {
// One of the arguments to the copy kernel is updated for each token, hence we need to
// replace that argument with the updated value in the CUDA graph
// on update steps, the live parameters will already be captured
int k = 0;
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
}
}
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
#endif // USE_CUDA_GRAPH
bool graph_evaluated_or_captured = false;
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
return cuda_graph_update_required;
}
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
cudaGraphExecUpdateResultInfo result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
#endif
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
[[maybe_unused]] std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph,
bool & cuda_graph_update_required) {
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
@ -2519,19 +2535,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
cuda_ctx->cuda_graph->graph = nullptr;
}
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
#if 0
if (disable_cuda_graphs_due_to_failed_capture) {
use_cuda_graph = false;
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
#endif
} else {
graph_evaluated_or_captured = true; // CUDA graph has been captured
}
#endif
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
graph_evaluated_or_captured = true; // CUDA graph has been captured
} else {
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
@ -2544,72 +2549,91 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
}
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
if (cuda_graph_update_required) {
// Extract nodes from graph
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.clear();
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.clear();
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
if (cuda_ctx->cuda_graph->num_nodes > 0) {
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
// Loop over nodes, and extract kernel parameters from each node
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
cudaGraphNodeType node_type;
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
if (node_type == cudaGraphNodeTypeKernel) {
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
if (stat == cudaErrorInvalidDeviceFunction) {
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
// We don't need to update blas nodes, so clear error and move on.
cudaGetLastError();
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
}
}
}
// One of the arguments to the copy kernel is updated for each token, hence we need to
// replace that argument with the updated value in the CUDA graph
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
int k = 0;
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}
}
maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required);
// Update graph executable
cudaGraphExecUpdateResultInfo result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
} else {
GGML_ASSERT(stat == cudaSuccess);
}
update_cuda_graph_executable(cuda_ctx);
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
#endif // USE_CUDA_GRAPH
}
}
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
// vector of pointers to CUDA cpy kernels, which are required to identify
// kernel parameters which need updated in the graph for each token
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
bool cuda_graph_update_required = false;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph,
ggml_cuda_cpy_fn_ptrs, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
}
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
#endif // USE_CUDA_GRAPH
bool graph_evaluated_or_captured = false;
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}