Merge branch 'master' into vgel/repeng

This commit is contained in:
Georgi Gerganov 2024-03-14 14:26:23 +02:00
commit 42abb46c1f
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
41 changed files with 1800 additions and 1146 deletions

View File

@ -333,6 +333,7 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@ -361,6 +362,7 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \

View File

@ -25,17 +25,14 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug, Release]
build_type: [Debug]
include:
- build_type: Release
sanitizer: ""
exclude:
- build_type: Release
sanitizer: ADDRESS
- build_type: Release
- build_type: Debug
sanitizer: THREAD
- build_type: Release
sanitizer: UNDEFINED
disabled_on_pr: true
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
container:
image: ubuntu:latest
@ -81,13 +78,14 @@ jobs:
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ github.event.schedule != '' && matrix.build_type == 'Release' || github.event.inputs.slow_tests == 'true' }}
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
@ -124,13 +122,14 @@ jobs:
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
- name: Slow tests
id: server_integration_tests_slow
if: ${{ github.event.schedule != '' || github.event.inputs.slow_tests == 'true' }}
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
behave.exe --stop --no-skipped --no-capture --tags slow

View File

@ -1,20 +0,0 @@
name: clang-tidy review post comments
on:
workflow_dispatch:
workflows: ["clang-tidy-review"]
types:
- completed
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: ZedThree/clang-tidy-review/post@v0.13.0
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
with:
# adjust options as necessary
lgtm_comment_body: ''
annotations: false
max_comments: 25

View File

@ -1,23 +0,0 @@
name: clang-tidy-review
on:
pull_request:
branches:
- master
jobs:
clang-tidy-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ZedThree/clang-tidy-review@v0.13.0
id: review
with:
lgtm_comment_body: ''
build_dir: build
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
split_workflow: true
- uses: ZedThree/clang-tidy-review/upload@v0.13.0

2
.gitignore vendored
View File

@ -25,6 +25,8 @@
.vscode/
.idea/
ggml-metal-embed.metal
lcov-report/
gcovr-report/

View File

@ -118,6 +118,7 @@ option(LLAMA_SYCL "llama: use SYCL"
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
option(LLAMA_CPU_HBM "llama: use memkind for CPU HBM" OFF)
set(LLAMA_SCHED_MAX_COPIES "4" CACHE STRING "llama: max input copies for pipeline parallelism")
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
@ -147,6 +148,8 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
include(CheckCXXCompilerFlag)
add_compile_definitions(GGML_SCHED_MAX_COPIES=${LLAMA_SCHED_MAX_COPIES})
# enable libstdc++ assertions for debug builds
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
@ -197,9 +200,6 @@ if (LLAMA_METAL)
add_compile_definitions(GGML_METAL_NDEBUG)
endif()
# get full path to the file
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
@ -208,25 +208,31 @@ if (LLAMA_METAL)
enable_language(ASM)
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/ggml-common.h")
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
# merge ggml-common.h and ggml-metal.metal into a single file
set(METALLIB_EMBED_ASM "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.s")
set(METALLIB_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.metal")
add_custom_command(
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${METALLIB_SOURCE}
OUTPUT ${METALLIB_EMBED_ASM}
COMMAND echo "Embedding Metal library"
COMMAND sed -e '/\#include \"ggml-common.h\"/r ${METALLIB_COMMON}' -e '/\#include \"ggml-common.h\"/d' < ${METALLIB_SOURCE} > ${METALLIB_SOURCE_EMBED}
COMMAND echo ".section __DATA,__ggml_metallib" > ${METALLIB_EMBED_ASM}
COMMAND echo ".globl _ggml_metallib_start" >> ${METALLIB_EMBED_ASM}
COMMAND echo "_ggml_metallib_start:" >> ${METALLIB_EMBED_ASM}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE_EMBED}\\\"" >> ${METALLIB_EMBED_ASM}
COMMAND echo ".globl _ggml_metallib_end" >> ${METALLIB_EMBED_ASM}
COMMAND echo "_ggml_metallib_end:" >> ${METALLIB_EMBED_ASM}
DEPENDS ggml-metal.metal ggml-common.h
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${METALLIB_EMBED_ASM})
else()
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
@ -238,15 +244,18 @@ if (LLAMA_METAL)
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
set(XC_FLAGS -fno-fast-math -fno-inline -g)
if (LLAMA_QKK_64)
set(XC_FLAGS ${XC_FLAGS} -DQK_K=64)
else()
set(XC_FLAGS -O3)
endif()
add_custom_command(
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DEPENDS ggml-metal.metal
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
DEPENDS ggml-metal.metal ggml-common.h
COMMENT "Compiling Metal kernels"
)
@ -254,7 +263,7 @@ if (LLAMA_METAL)
ggml-metal ALL
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
)
endif()
endif() # LLAMA_METAL_EMBED_LIBRARY
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}

View File

@ -167,6 +167,10 @@ ifeq ($(UNAME_S),OpenBSD)
MK_CPPFLAGS += -D_BSD_SOURCE
endif
ifdef LLAMA_SCHED_MAX_COPIES
MK_CPPFLAGS += -DGGML_SCHED_MAX_COPIES=$(LLAMA_SCHED_MAX_COPIES)
endif
ifdef LLAMA_DEBUG
MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g
@ -553,13 +557,14 @@ ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef LLAMA_METAL_EMBED_LIBRARY
ggml-metal-embed.o: ggml-metal.metal
ggml-metal-embed.o: ggml-metal.metal ggml-common.h
@echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@

View File

@ -10,12 +10,14 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Recent API changes
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
### Hot topics
- Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
@ -902,6 +904,9 @@ First, install the essential packages for termux:
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux.
```
$ mkdir build-android
$ cd build-android
@ -910,7 +915,28 @@ $ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROI
$ make
```
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Finally, copy the `llama` binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
```
Here is a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4

View File

@ -483,6 +483,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_batch = std::stoi(argv[i]);
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ubatch = std::stoi(argv[i]);
} else if (arg == "--keep") {
if (++i >= argc) {
invalid_param = true;
@ -1006,7 +1012,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" binary file containing multiple choice tasks.\n");
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
printf(" -ub N, --ubatch-size N\n");
printf(" physical maximum batch size (default: %d)\n", params.n_ubatch);
printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
printf(" (default: %s)\n", sampler_type_names.c_str());
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
@ -1322,8 +1330,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
auto cparams = llama_context_default_params();
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_seq_max = params.n_parallel;
cparams.n_batch = params.n_batch;
cparams.n_ubatch = params.n_ubatch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.seed = params.seed;
@ -1443,6 +1452,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_clear(lctx);
llama_synchronize(lctx);
llama_reset_timings(lctx);
}
@ -1931,6 +1941,20 @@ void llama_embd_normalize(const float * inp, float * out, int n) {
}
}
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
double sum = 0.0;
double sum1 = 0.0;
double sum2 = 0.0;
for (int i = 0; i < n; i++) {
sum += embd1[i] * embd2[i];
sum1 += embd1[i] * embd1[i];
sum2 += embd2[i] * embd2[i];
}
return sum / (sqrt(sum1) * sqrt(sum2));
}
//
// Control vector utils
//

View File

@ -51,7 +51,8 @@ struct gpt_params {
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
@ -270,6 +271,8 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40
void llama_embd_normalize(const float * inp, float * out, int n);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//

View File

@ -17,6 +17,13 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
return nullptr;
}
// Ensure that there is a "root" node.
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
delete result;
return nullptr;
}
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
result->grammar = llama_grammar_init(

View File

@ -138,6 +138,8 @@ int main(int argc, char ** argv) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
llama_synchronize(ctx);
}
return true;

View File

@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch == params.n_ctx);
GGML_ASSERT(params.n_batch >= params.n_ctx);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
@ -167,15 +167,26 @@ int main(int argc, char ** argv) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
// print first 3 embeddings
for (int j = 0; j < std::min(3, n_prompts); j++) {
fprintf(stderr, "embedding %d: ", j);
for (int i = 0; i < n_embd; i++) {
fprintf(stderr, "%f ", emb[j * n_embd + i]);
// print the first part of the embeddings
fprintf(stdout, "\n");
for (int j = 0; j < n_prompts; j++) {
fprintf(stdout, "embedding %d: ", j);
for (int i = 0; i < std::min(16, n_embd); i++) {
fprintf(stdout, "%f ", emb[j * n_embd + i]);
}
fprintf(stderr, "\n\n");
fprintf(stdout, "\n");
}
// print cosine similarity matrix
fprintf(stdout, "\n");
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "\n");
}
fprintf(stderr, "\n");
// clean up
llama_print_timings(ctx);

View File

@ -6,22 +6,6 @@
// #define GRIT_DEBUG
static float dot_product(const std::vector<float> & v1, const std::vector<float> & v2) {
float dot = 0.0f;
for (uint64_t i = 0; i < v1.size(); ++i) {
dot += v1[i] * v2[i];
}
return dot;
}
static float norm(const std::vector<float> & v) {
return std::sqrt(dot_product(v, v));
}
static float cosine_similarity(const std::vector<float> & v1, const std::vector<float> & v2) {
return dot_product(v1, v2) / (norm(v1) * norm(v2));
}
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
std::vector<std::vector<float>> result;
@ -203,10 +187,12 @@ int main(int argc, char * argv[]) {
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const float cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]);
const float cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]);
const float cosine_sim_q1_d0 = cosine_similarity(q_rep[1], d_rep[0]);
const float cosine_sim_q1_d1 = cosine_similarity(q_rep[1], d_rep[1]);
const int n_embd = llama_n_embd(mdl);
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
const float cosine_sim_q1_d0 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q1_d1 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);

View File

@ -164,6 +164,7 @@ struct cmd_params {
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<int> n_batch;
std::vector<int> n_ubatch;
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
std::vector<int> n_threads;
@ -183,7 +184,8 @@ static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_batch */ {512},
/* n_batch */ {2048},
/* n_ubatch */ {512},
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()},
@ -208,6 +210,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
@ -217,7 +220,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
@ -297,6 +300,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
} else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) {
invalid_param = true;
@ -455,6 +465,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
@ -474,6 +485,7 @@ struct cmd_params_instance {
int n_prompt;
int n_gen;
int n_batch;
int n_ubatch;
ggml_type type_k;
ggml_type type_v;
int n_threads;
@ -511,6 +523,7 @@ struct cmd_params_instance {
cparams.n_ctx = n_prompt + n_gen;
cparams.n_batch = n_batch;
cparams.n_ubatch = n_ubatch;
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.offload_kqv = !no_kv_offload;
@ -532,6 +545,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & mmp : params.use_mmap)
for (const auto & embd : params.embeddings)
for (const auto & nb : params.n_batch)
for (const auto & nub : params.n_ubatch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & nkvo : params.no_kv_offload)
@ -545,6 +559,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_prompt = */ n_prompt,
/* .n_gen = */ 0,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
@ -568,6 +583,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_prompt = */ 0,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
@ -604,6 +620,7 @@ struct test {
uint64_t model_size;
uint64_t model_n_params;
int n_batch;
int n_ubatch;
int n_threads;
ggml_type type_k;
ggml_type type_v;
@ -627,6 +644,7 @@ struct test {
model_size = llama_model_size(lmodel);
model_n_params = llama_model_n_params(lmodel);
n_batch = inst.n_batch;
n_ubatch = inst.n_ubatch;
n_threads = inst.n_threads;
type_k = inst.type_k;
type_v = inst.type_v;
@ -705,7 +723,8 @@ struct test {
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_threads", "type_k", "type_v",
"n_batch", "n_ubatch",
"n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload",
"tensor_split", "use_mmap", "embeddings",
@ -719,7 +738,8 @@ struct test {
enum field_type {STRING, BOOL, INT, FLOAT};
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
field == "n_threads" ||
field == "model_size" || field == "model_n_params" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" ||
@ -759,7 +779,8 @@ struct test {
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_batch), std::to_string(n_ubatch),
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
@ -957,6 +978,9 @@ struct markdown_printer : public printer {
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.emplace_back("n_batch");
}
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
fields.emplace_back("n_ubatch");
}
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
fields.emplace_back("type_k");
}
@ -1096,25 +1120,32 @@ struct sql_printer : public printer {
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
//std::vector<llama_token> tokens(n_prompt, llama_token_bos(llama_get_model(ctx)));
//llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt, n_past, 0));
//GGML_UNUSED(n_batch);
std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
int n_processed = 0;
llama_set_n_threads(ctx, n_threads, n_threads);
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
n_processed += n_tokens;
}
llama_synchronize(ctx);
}
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_token token = llama_token_bos(llama_get_model(ctx));
llama_set_n_threads(ctx, n_threads, n_threads);
llama_token token = llama_token_bos(llama_get_model(ctx));
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
llama_synchronize(ctx);
}
}
@ -1203,7 +1234,8 @@ int main(int argc, char ** argv) {
// warmup run
if (t.n_prompt > 0) {
test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
test_gen(ctx, 1, 0, t.n_threads);
@ -1219,6 +1251,7 @@ int main(int argc, char ** argv) {
if (t.n_gen > 0) {
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
}
uint64_t t_ns = get_time_ns() - t_start;
t.samples_ns.push_back(t_ns);
}

View File

@ -221,6 +221,7 @@ actor LlamaContext {
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during prompt")
}
llama_synchronize(context)
let t_pp_end = ggml_time_us()
@ -240,6 +241,7 @@ actor LlamaContext {
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during text generation")
}
llama_synchronize(context)
}
let t_tg_end = ggml_time_us()

View File

@ -63,12 +63,20 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
@ -76,18 +84,18 @@ cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
4) Create the visual gguf model:
5) Create the visual gguf model:
```console
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
5) Then convert the model to gguf format:
6) Then convert the model to gguf format:
```console
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
6) And finally we can run the llava-cli using the 1.6 model version:
7) And finally we can run the llava-cli using the 1.6 model version:
```console
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
```

View File

@ -589,9 +589,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
}
}
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
llama_synchronize(ctx);
const auto t_end = std::chrono::high_resolution_clock::now();
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total*n_chunk/n_seq);

View File

@ -147,7 +147,7 @@ struct server_slot {
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t n_predict = -1;
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_processed = 0;
@ -739,7 +739,13 @@ struct server_context {
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
// the update_slots() logic will always submit a maximum of n_batch tokens
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
{
const int32_t n_batch = llama_n_batch(ctx);
batch = llama_batch_init(n_batch, 0, params.n_parallel);
}
metrics.init();
}
@ -1036,8 +1042,10 @@ struct server_context {
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) {
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
const int32_t n_batch = llama_n_batch(ctx);
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
llama_batch batch_view = {
n_tokens,
batch.token + i,
@ -1226,7 +1234,7 @@ struct server_context {
{"mirostat_eta", slot.sparams.mirostat_eta},
{"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict},
{"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
{"n_keep", params.n_keep},
{"ignore_eos", ignore_eos},
{"stream", slot.params.stream},
@ -1738,7 +1746,8 @@ struct server_context {
}
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
int32_t n_batch = llama_n_batch(ctx);
int32_t n_ubatch = llama_n_ubatch(ctx);
// next, batch any pending prompts without exceeding n_batch
if (params.cont_batching || batch.n_tokens == 0) {
@ -1811,7 +1820,7 @@ struct server_context {
if (slot.embedding) {
// this prompt is too large to process - discard it
if (slot.n_prompt_tokens > n_batch) {
if (slot.n_prompt_tokens > n_ubatch) {
slot.state = SLOT_STATE_PROCESSING;
slot.command = SLOT_COMMAND_NONE;
slot.release();
@ -2157,7 +2166,8 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
printf(" -ub N, --ubatch-size N physical maximum batch size (default: %d)\n", params.n_ubatch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_supports_mlock()) {
@ -2424,6 +2434,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
break;
}
params.n_batch = std::stoi(argv[i]);
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ubatch = std::stoi(argv[i]);
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
@ -2763,6 +2779,7 @@ int main(int argc, char ** argv) {
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "POST");
res.set_header("Access-Control-Allow-Headers", "*");
return res.set_content("", "application/json; charset=utf-8");
});
svr->set_logger(log_server_request);
@ -3371,44 +3388,37 @@ int main(int argc, char ** argv) {
const json body = json::parse(req.body);
bool is_openai = false;
// an input prompt can string or a list of tokens (integer)
std::vector<json> prompts;
// an input prompt can be a string or a list of tokens (integer)
json prompt;
if (body.count("input") != 0) {
is_openai = true;
if (body["input"].is_array()) {
// support multiple prompts
for (const json & elem : body["input"]) {
prompts.push_back(elem);
}
} else {
// single input prompt
prompts.push_back(body["input"]);
}
prompt = body["input"];
} else if (body.count("content") != 0) {
// only support single prompt here
std::string content = body["content"];
prompts.push_back(content);
// with "content", we only support single prompt
prompt = std::vector<std::string>{body["content"]};
} else {
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
return;
}
// process all prompts
json responses = json::array();
for (auto & prompt : prompts) {
// TODO @ngxson : maybe support multitask for this endpoint?
// create and queue the task
json responses;
{
const int id_task = ctx_server.queue_tasks.get_new_id();
ctx_server.queue_results.add_waiting_task_id(id_task);
ctx_server.request_completion(id_task, -1, { {"prompt", prompt}, { "n_predict", 0}}, false, true);
ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true);
// get the result
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (!result.error) {
// append to the responses
responses.push_back(result.data);
if (result.data.count("results")) {
// result for multi-task
responses = result.data["results"];
} else {
// result for single task
responses = std::vector<json>{result.data};
}
} else {
// error received, ignore everything else
res_error(res, result.data);
@ -3417,24 +3427,19 @@ int main(int argc, char ** argv) {
}
// write JSON response
json root;
if (is_openai) {
json res_oai = json::array();
int i = 0;
for (auto & elem : responses) {
res_oai.push_back(json{
{"embedding", json_value(elem, "embedding", json::array())},
{"index", i++},
{"object", "embedding"}
});
}
root = format_embeddings_response_oaicompat(body, res_oai);
} else {
root = responses[0];
}
json root = is_openai
? format_embeddings_response_oaicompat(body, responses)
: responses[0];
return res.set_content(root.dump(), "application/json; charset=utf-8");
};
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
return false;
};
};
//
// Router
//
@ -3446,17 +3451,6 @@ int main(int argc, char ** argv) {
}
// using embedded static files
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
return false;
};
};
svr->Options(R"(/.*)", [](const httplib::Request &, httplib::Response & res) {
// TODO @ngxson : I have no idea what it is... maybe this is redundant?
return res.set_content("", "application/json; charset=utf-8");
});
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));

View File

@ -9,6 +9,7 @@ Feature: llama.cpp server
And 42 as server seed
And 2 slots
And 1024 as batch size
And 1024 as ubatch size
And 2048 KV cache size
And embeddings extraction
Then the server is starting

View File

@ -33,6 +33,7 @@ def step_server_config(context, server_fqdn, server_port):
context.model_alias = None
context.n_batch = None
context.n_ubatch = None
context.n_ctx = None
context.n_ga = None
context.n_ga_w = None
@ -118,6 +119,10 @@ def step_server_metrics(context):
def step_start_server(context):
start_server_background(context)
attempts = 0
max_attempts = 20
if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2
while True:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((context.server_fqdn, context.server_port))
@ -125,7 +130,7 @@ def step_start_server(context):
print("\x1b[33;46mserver started!\x1b[0m")
return
attempts += 1
if attempts > 20:
if attempts > max_attempts:
assert False, "server not started"
print(f"waiting for server to start, connect error code = {result}...")
time.sleep(0.1)
@ -278,6 +283,11 @@ def step_n_batch(context, n_batch):
context.n_batch = n_batch
@step('{n_ubatch:d} as ubatch size')
def step_n_ubatch(context, n_ubatch):
context.n_ubatch = n_ubatch
@step('{seed:d} as seed')
def step_seed(context, seed):
context.seed = seed
@ -937,6 +947,9 @@ async def wait_for_health_status(context,
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
interval = 0.5
counter = 0
if 'GITHUB_ACTIONS' in os.environ:
timeout *= 2
async with aiohttp.ClientSession() as session:
while True:
async with await session.get(f'{base_url}/health', params=params) as health_response:
@ -1029,6 +1042,8 @@ def start_server_background(context):
]
if context.n_batch:
server_args.extend(['--batch-size', context.n_batch])
if context.n_ubatch:
server_args.extend(['--ubatch-size', context.n_ubatch])
if context.n_gpu_layer:
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
if context.server_continuous_batching:

View File

@ -529,6 +529,16 @@ static std::vector<json> format_partial_response_oaicompat(json result, const st
}
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
json data = json::array();
int i = 0;
for (auto & elem : embeddings) {
data.push_back(json{
{"embedding", json_value(elem, "embedding", json::array())},
{"index", i++},
{"object", "embedding"}
});
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
@ -536,7 +546,7 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
{"prompt_tokens", 0},
{"total_tokens", 0}
}},
{"data", embeddings}
{"data", data}
};
return res;

View File

@ -61,7 +61,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
}
}
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
@ -69,25 +68,14 @@ static size_t aligned_offset(const void * buffer, size_t offset, size_t alignmen
}
// tallocr
struct ggml_tallocr {
ggml_backend_buffer_t buffer;
void * base;
size_t alignment;
size_t offset;
};
ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
ggml_tallocr_t talloc = malloc(sizeof(struct ggml_tallocr));
if (talloc == NULL) {
return NULL;
}
struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
void * base = ggml_backend_buffer_get_base(buffer);
size_t align = ggml_backend_buffer_get_alignment(buffer);
assert(align && !(align & (align - 1))); // power of 2
*talloc = (struct ggml_tallocr) {
struct ggml_tallocr talloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.base = */ base,
/*.alignment = */ align,
@ -96,11 +84,7 @@ ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
return talloc;
}
void ggml_tallocr_free(ggml_tallocr_t talloc) {
free(talloc);
}
void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor) {
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
size = GGML_PAD(size, talloc->alignment);
@ -354,12 +338,16 @@ struct hash_node {
bool allocated;
};
//
struct tensor_alloc {
size_t offset;
size_t size_max; // 0 = pre-allocated, unused, or view
};
struct leaf_alloc {
int buffer_id;
struct tensor_alloc leaf;
};
struct node_alloc {
int buffer_id;
struct tensor_alloc dst;
@ -378,7 +366,7 @@ struct ggml_gallocr {
struct node_alloc * node_allocs; // [n_nodes]
int n_nodes;
struct tensor_alloc * leaf_allocs; // [n_leafs]
struct leaf_alloc * leaf_allocs; // [n_leafs]
int n_leafs;
};
@ -543,13 +531,20 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
return node_buffer_ids ? node_buffer_ids[i] : 0;
}
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
// clear hash tables
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
// allocate leafs
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
}
// count number of children and views
// allocate all graph inputs and leafs first to avoid overwriting them
// allocate other graph inputs and leafs first to avoid overwriting them
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@ -577,19 +572,6 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
}
}
// allocate the remaining leafs that are unused on the graph
// these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (hn->n_children == 0) {
assert(!hn->allocated);
// since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
ggml_gallocr_allocate_node(galloc, leaf, 0);
}
}
// allocate tensors
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@ -652,7 +634,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
}
}
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
size_t hash_size = graph->visited_hash_table.size;
// initialize hash table
@ -676,7 +658,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
// allocate in hash table
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids);
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
// set the node_allocs from the hash table
if (galloc->n_nodes < graph->n_nodes) {
@ -711,15 +693,16 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
if (galloc->n_leafs < graph->n_leafs) {
free(galloc->leaf_allocs);
galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs);
GGML_ASSERT(galloc->leaf_allocs != NULL);
}
galloc->n_leafs = graph->n_leafs;
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
galloc->leaf_allocs[i].offset = hn->offset;
galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
galloc->leaf_allocs[i].leaf.offset = hn->offset;
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
// reallocate buffers if needed
@ -727,7 +710,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
if (new_size > cur_size) {
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
if (new_size > cur_size || galloc->buffers[i] == NULL) {
#ifndef NDEBUG
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
@ -744,30 +728,30 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
return ggml_gallocr_reserve_n(galloc, graph, NULL);
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
}
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) {
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
if (node->view_src != NULL) {
if (node->buffer == NULL) {
if (tensor->view_src != NULL) {
if (tensor->buffer == NULL) {
assert(tensor_alloc->offset == SIZE_MAX);
if (node->view_src->buffer == NULL) {
if (tensor->view_src->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
ggml_backend_view_init(galloc->buffers[buffer_id], node);
ggml_backend_view_init(galloc->buffers[buffer_id], tensor);
}
} else {
if (node->data == NULL) {
if (tensor->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
} else {
if (node->buffer == NULL) {
if (tensor->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
@ -843,13 +827,18 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
// reset buffers
for (int i = 0; i < galloc->n_buffers; i++) {
// zero size buffers are not allocated
if (galloc->buffers[i] != NULL) {
ggml_backend_buffer_reset(galloc->buffers[i]);
}
}
// allocate the graph tensors from the previous assignments
// leafs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf);
}
// nodes
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@ -863,12 +852,6 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
}
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
}
// leafs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
}
return true;
}
@ -900,12 +883,12 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
return false;
}
struct ggml_tallocr * tallocr = ggml_tallocr_new(buffer);
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL) {
if (t->view_src == NULL) {
ggml_tallocr_alloc(tallocr, t);
ggml_tallocr_alloc(&tallocr, t);
} else if (t->buffer == NULL) {
ggml_backend_view_init(buffer, t);
}
@ -917,8 +900,6 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
}
}
ggml_tallocr_free(tallocr);
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
(*buffers)[(*n_buffers)++] = buffer;

View File

@ -11,11 +11,15 @@ typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend * ggml_backend_t;
// Tensor allocator
typedef struct ggml_tallocr * ggml_tallocr_t;
struct ggml_tallocr {
ggml_backend_buffer_t buffer;
void * base;
size_t alignment;
size_t offset;
};
GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer);
GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor);
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
// Graph allocator
/*
@ -50,7 +54,11 @@ GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
// returns false if the buffer allocation failed
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids);
GGML_API bool ggml_gallocr_reserve_n(
ggml_gallocr_t galloc,
struct ggml_cgraph * graph,
const int * node_buffer_ids,
const int * leaf_buffer_ids);
// automatic reallocation if the topology changes when using a single buffer
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)

View File

@ -86,12 +86,12 @@ extern "C" {
// (optional) asynchronous tensor data access
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
void (*GGML_CALL synchronize)(ggml_backend_t backend);
// create a plan for ggml_cgraph and free it
// compute graph with a plan (not used currently)
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
@ -102,16 +102,27 @@ extern "C" {
// check if the backend supports an operation
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);
void (*GGML_CALL event_record) (ggml_backend_event_t event);
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
struct ggml_backend_event {
ggml_backend_t backend;
void * context;
};
//
// Backend registry
//

View File

@ -221,29 +221,29 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (!size) {
return;
}
tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
buf->iface.set_tensor(buf, tensor, data, offset, size);
}
GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (!size) {
return;
}
tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
@ -255,18 +255,30 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
}
enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
ggml_backend_synchronize(backend);
return err;
}
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
@ -314,34 +326,68 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
}
}
void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
return;
}
if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
if (backend->iface.cpy_tensor_async != NULL) {
if (backend->iface.cpy_tensor_async(backend, src, dst)) {
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
}
}
}
size_t nbytes = ggml_nbytes(src);
// an async copy would normally happen after all the queued operations on both backends are completed
// sync src, set_async dst
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
}
else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
} else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_copy(src, dst);
ggml_backend_synchronize(backend_dst);
}
}
// events
ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
if (backend->iface.event_new == NULL) {
return NULL;
}
return backend->iface.event_new(backend);
}
void ggml_backend_event_free(ggml_backend_event_t event) {
if (event == NULL) {
return;
}
event->backend->iface.event_free(event);
}
void ggml_backend_event_record(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_record != NULL);
event->backend->iface.event_record(event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
event->backend->iface.event_synchronize(event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
}
// backend registry
#define GGML_MAX_BACKENDS_REG 16
#define GGML_REG_MAX_BACKENDS 16
struct ggml_backend_reg {
char name[128];
@ -350,7 +396,7 @@ struct ggml_backend_reg {
void * user_data;
};
static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
static size_t ggml_backend_registry_count = 0;
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
@ -395,7 +441,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
}
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
size_t id = ggml_backend_registry_count;
@ -746,8 +792,12 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
free(cpu_ctx->work_data);
cpu_ctx->work_data = malloc(cplan.work_size);
if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED;
}
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
@ -784,6 +834,11 @@ static struct ggml_backend_i cpu_backend_i = {
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
@ -939,15 +994,27 @@ static bool ggml_is_view_op(enum ggml_op op) {
// scheduler
#define GGML_MAX_BACKENDS 16
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
#ifndef GGML_SCHED_MAX_BACKENDS
#define GGML_SCHED_MAX_BACKENDS 16
#endif
#ifndef GGML_SCHED_MAX_SPLITS
#define GGML_SCHED_MAX_SPLITS 256
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
#endif
#ifndef GGML_SCHED_MAX_COPIES
#define GGML_SCHED_MAX_COPIES 4
#endif
struct ggml_backend_sched_split {
int backend_id;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_inputs;
// graph view of this split
struct ggml_cgraph graph;
@ -955,28 +1022,37 @@ struct ggml_backend_sched_split {
struct ggml_backend_sched {
bool is_reset; // true if the scheduler has been reset since the last graph split
bool is_alloc;
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
ggml_gallocr_t galloc;
// hash keys of the nodes in the graph
struct ggml_hash_set hash_set;
// hash values
int * tensor_backend_id;
struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
int * node_backend_ids; // [n_nodes]
int n_nodes;
int * node_backend_ids; // [graph_size]
int * leaf_backend_ids; // [graph_size]
// copy of the graph with modified inputs
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
// graph splits
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
int n_splits;
// pipeline parallelism support
int n_copies;
int cur_copy;
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_graph_inputs;
struct ggml_context * ctx;
ggml_backend_sched_eval_callback callback_eval;
@ -988,12 +1064,11 @@ struct ggml_backend_sched {
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
#define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
// returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
@ -1005,7 +1080,8 @@ static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backen
return -1;
}
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
ggml_backend_buffer_t buffer = tensor->buffer;
if (buffer == NULL) {
return -1;
}
@ -1016,12 +1092,16 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, gg
return i;
}
}
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
return -1; // silence warning
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
__func__, ggml_backend_buffer_name(buffer), tensor->name);
GGML_ASSERT(false);
return -1;
}
#if 0
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)]
#else
@ -1035,19 +1115,28 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
// assign pre-allocated nodes to their backend
// dst
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
if (cur_backend != -1) {
SET_CAUSE(node, "1.dst");
SET_CAUSE(tensor, "1.dst");
return cur_backend;
}
// view_src
if (tensor->view_src != NULL) {
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
if (cur_backend != -1) {
SET_CAUSE(node, "1.vsrc");
SET_CAUSE(tensor, "1.vsrc");
return cur_backend;
}
}
// input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
SET_CAUSE(tensor, "1.inp");
return cur_backend;
}
// assign nodes that use weights to the backend of the weights
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i];
@ -1055,9 +1144,9 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
continue;
}
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
// operations with weights are always run on the same backend as the weights
SET_CAUSE(node, "1.wgt%d", i);
SET_CAUSE(tensor, "1.wgt%d", i);
return src_backend;
}
}
@ -1093,7 +1182,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_backend_t tensor_backend = tensor_backend(node);
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
for (int j = 0; j < GGML_MAX_SRC; j++) {
@ -1101,7 +1190,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = tensor_backend(src);
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
}
@ -1118,6 +1207,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
sched->is_reset = false;
struct ggml_init_params params = {
@ -1163,7 +1253,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
#ifdef DEBUG_PASS1
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 2: expand current backend assignments
@ -1171,28 +1261,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.1");
}
}
}
// pass 2.2 expand gpu down
{
@ -1217,7 +1285,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
// pass 2.3 expand rest up
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
@ -1227,14 +1295,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.3");
SET_CAUSE(node, "2.1");
}
}
}
// pass 2.4 expand rest down
{
int cur_backend_id = -1;
@ -1252,8 +1326,26 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
}
// pass 2.3 expand rest up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.3");
}
}
}
#ifdef DEBUG_PASS2
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 3: assign backends to remaining src from dst and view_src
@ -1283,7 +1375,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
#ifdef DEBUG_PASS3
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 4: split graph, find tensors that need to be copied
@ -1315,7 +1407,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (tensor_backend_id != cur_backend_id) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
sched->splits[cur_split].backend_id = tensor_backend_id;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
@ -1328,25 +1420,57 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (src == NULL) {
continue;
}
int src_backend_id = tensor_backend_id(src);
assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
size_t id = hash_id(src);
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy;
if (c == sched->cur_copy) {
tensor_copy = src; // use the original tensor as the current copy
} else {
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
}
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = src_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_graph_inputs = sched->n_graph_inputs++;
GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->graph_inputs[n_graph_inputs] = src;
}
}
if (src_backend_id != tensor_backend_id) {
// create a copy of the input in the split's backend
size_t id = hash_id(src);
if (sched->tensor_copies[id][cur_backend_id] == NULL) {
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
sched->tensor_copies[id][cur_backend_id] = tensor_copy;
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = cur_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = src;
}
node->src[j] = sched->tensor_copies[id][cur_backend_id];
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
}
}
}
@ -1354,37 +1478,39 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->n_splits = cur_split + 1;
}
#ifdef DEBUG_PASS4
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
#ifndef NDEBUG
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_backend_t tensor_backend = tensor_backend(node);
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
if (tensor_backend == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = tensor_backend(src);
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
if (src_backend != tensor_backend /* && src_backend != NULL */) {
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
}
if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
}
}
}
@ -1392,18 +1518,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
// TODO: avoid this copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
// add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
@ -1417,18 +1545,56 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
if (sched->n_copies > 1) {
// add input copies as leafs so that they are allocated first
for (int i = 0; i < sched->n_graph_inputs; i++) {
struct ggml_tensor * input = sched->graph_inputs[i];
size_t id = hash_id(input);
int backend_id = tensor_backend_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
int backend_id = split->backend_id;
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
size_t id = hash_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
}
}
// add leafs from the original graph
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
sched->graph = graph_copy;
}
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
// allocate graph
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG
fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
#endif
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
return false;
}
}
@ -1437,9 +1603,6 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
@ -1448,34 +1611,36 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
ggml_backend_t split_backend = sched->backends[split_backend_id];
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
GGML_ASSERT(input->buffer != NULL);
GGML_ASSERT(input_cpy->buffer != NULL);
ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy(input, input_cpy);
} else {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
ggml_backend_synchronize(input_backend);
}
//ggml_backend_synchronize(split_backend); // necessary to measure copy time
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
}
}
uint64_t compute_start_us = ggml_time_us();
if (!sched->callback_eval) {
enum ggml_status ec = ggml_backend_graph_compute(split_backend, &split->graph);
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
}
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
} else {
// similar to ggml_backend_compare_graph_backend
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
@ -1494,11 +1659,14 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
enum ggml_status ec = ggml_backend_graph_compute(split_backend, &gv);
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
}
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
ggml_backend_synchronize(split_backend);
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
break;
}
@ -1506,39 +1674,54 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
j0 = j1;
}
}
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
// record the event of this copy
if (split->n_inputs > 0) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
}
}
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
return GGML_STATUS_SUCCESS;
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
ggml_backend_sched_t ggml_backend_sched_new(
ggml_backend_t * backends,
ggml_backend_buffer_type_t * bufts,
int n_backends,
size_t graph_size,
bool parallel) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
for (int b = 0; b < n_backends; b++) {
sched->backends[b] = backends[b];
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
if (sched->n_copies > 1) {
for (int c = 0; c < sched->n_copies; c++) {
sched->events[b][c] = ggml_backend_event_new(backends[b]);
}
}
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
@ -1552,12 +1735,18 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int b = 0; b < sched->n_backends; b++) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
free(sched->hash_set.keys);
free(sched->tensor_backend_id);
free(sched->tensor_copies);
free(sched->node_backend_ids);
free(sched->leaf_backend_ids);
free(sched);
}
@ -1569,34 +1758,63 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true;
sched->is_alloc = false;
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
ggml_backend_sched_split_graph(sched, measure_graph);
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
// TODO: extract this to a separate function
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
return false;
}
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
return true;
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
sched->is_alloc = true;
return true;
}
enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
ggml_backend_sched_synchronize(sched);
return err;
}
if (!sched->is_reset) {
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
if (!sched->is_alloc) {
if (!ggml_backend_sched_alloc_graph(sched, graph)) {
return GGML_STATUS_ALLOC_FAILED;
}
}
return ggml_backend_sched_compute_splits(sched);
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
@ -1606,19 +1824,24 @@ int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
return sched->n_copies;
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
}
ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;

View File

@ -9,6 +9,7 @@ extern "C" {
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
@ -72,11 +73,24 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
// events
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
//
// CPU backend
@ -123,27 +137,31 @@ extern "C" {
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be asigned
// preferrably to run on the same backend as the buffer
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
// initialize buffers from a max size graph (optional)
reserve_graph = build_graph(sched, max_batch_size);
// in build_graph:
build_graph(...) {
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
ggml_backend_sched_reserve(sched, reserve_graph);
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
// if there are graph inputs:
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, graph);
ggml_backend_tensor_set(input_tensor, ...);
ggml_backend_sched_graph_compute(sched, graph);
}
*/
struct ggml_backend_sched;
@ -158,20 +176,26 @@ extern "C" {
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
// Reset all assignments and allocators - must be called before changing the node backends
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);

View File

@ -72,6 +72,7 @@
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
#define cudaEventSynchronize hipEventSynchronize
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
@ -81,6 +82,7 @@
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaLaunchHostFunc hipLaunchHostFunc
#ifdef GGML_HIP_UMA
#define cudaMalloc hipMallocManaged
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
@ -104,6 +106,7 @@
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamFireAndForget hipStreamFireAndForget
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaStream_t hipStream_t
@ -10641,8 +10644,20 @@ GGML_CALL void ggml_cuda_get_device_description(int device, char * description,
#define UNUSED GGML_UNUSED
struct ggml_backend_cuda_context {
explicit ggml_backend_cuda_context(int device) :
device(device),
name(GGML_CUDA_NAME + std::to_string(device)) {
}
~ggml_backend_cuda_context() {
if (copy_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(copy_event));
}
}
int device;
std::string name;
cudaEvent_t copy_event = nullptr;
};
// cuda buffer
@ -10732,9 +10747,8 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
@ -10743,26 +10757,25 @@ GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_cuda(src->buffer)) {
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(src_ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_set_device(dst_ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy((char *)dst->data, (const char *)src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice));
CUDA_CHECK(cudaDeviceSynchronize());
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
if (src_ctx->device == dst_ctx->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
} else {
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
}
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
return true;
}
return false;
UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
@ -11007,7 +11020,11 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buf
}
const char * buf_host = (const char *)data + offset_split;
CUDA_CHECK(cudaMemcpy(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
}
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
@ -11041,7 +11058,11 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buf
}
char * buf_host = (char *)data + offset_split;
CUDA_CHECK(cudaMemcpy(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
}
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
@ -11220,6 +11241,10 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
return &ggml_backend_cuda_buffer_type_host;
}
//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
//}
// backend
GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
@ -11243,8 +11268,9 @@ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer
GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
@ -11252,24 +11278,63 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
}
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
if (dst->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && ggml_backend_buffer_is_cuda(src->buffer)) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx->device][0]));
return true;
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
if (!ggml_backend_buffer_is_cuda(src->buffer)) {
return false;
}
if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
return false;
}
// device -> device
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
if (backend_src != backend_dst) {
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
if (!cuda_ctx_src->copy_event) {
ggml_cuda_set_device(cuda_ctx_src->device);
CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
}
// copy on src stream
if (cuda_ctx_src->device == cuda_ctx_dst->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx_dst->device][0]));
} else {
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), g_cudaStreams[cuda_ctx_src->device][0]));
}
// record event on src stream
CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, g_cudaStreams[cuda_ctx_src->device][0]));
// wait on dst stream for the copy to complete
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx_dst->device][0], cuda_ctx_src->copy_event, 0));
} else {
// src and dst are on the same backend
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx_dst->device][0]));
}
return true;
}
GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
@ -11444,6 +11509,52 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
UNUSED(backend);
}
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
cudaEvent_t event;
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
return new ggml_backend_event {
/* .backend = */ backend,
/* .context = */ event,
};
}
static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
delete event;
}
static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, g_cudaStreams[cuda_ctx->device][0]));
}
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
if (ggml_backend_is_cuda(event->backend)) {
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx->device][0], (cudaEvent_t)event->context, 0));
} else {
// untested
auto wait_fn = [](void * user_data) {
ggml_backend_event_t event = (ggml_backend_event_t)user_data;
ggml_backend_event_synchronize(event);
};
CUDA_CHECK(cudaLaunchHostFunc(g_cudaStreams[cuda_ctx->device][0], wait_fn, event));
}
}
static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
static ggml_backend_i ggml_backend_cuda_interface = {
/* .get_name = */ ggml_backend_cuda_name,
/* .free = */ ggml_backend_cuda_free,
@ -11457,6 +11568,11 @@ static ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .supports_op = */ ggml_backend_cuda_supports_op,
/* .event_new = */ ggml_backend_cuda_event_new,
/* .event_free = */ ggml_backend_cuda_event_free,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
};
static ggml_guid_t ggml_backend_cuda_guid() {
@ -11475,10 +11591,11 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
// not strictly necessary, but it may reduce the overhead of the first graph_compute
ggml_cuda_set_main_device(device);
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context {
/* .device = */ device,
/* .name = */ GGML_CUDA_NAME + std::to_string(device),
};
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
if (ctx == nullptr) {
fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
return nullptr;
}
ggml_backend_t cuda_backend = new ggml_backend {
/* .guid = */ ggml_backend_cuda_guid(),

View File

@ -1951,6 +1951,11 @@ static struct ggml_backend_i kompute_backend_i = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
/* .supports_op = */ ggml_backend_kompute_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_kompute_guid() {

View File

@ -280,6 +280,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
id<MTLLibrary> metal_library;
// load library
//
// - first check if the library is embedded
// - then check if the library is in the bundle
// - if not found, load the source and compile it
// - if that fails, return NULL
{
NSBundle * bundle = nil;
#ifdef SWIFT_PACKAGE
@ -287,12 +292,21 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
#else
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
NSError * error = nil;
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
if (libPath != nil) {
#if GGML_METAL_EMBED_LIBRARY
const bool try_metallib = false;
#else
const bool try_metallib = true;
#endif
NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
if (try_metallib && path_lib != nil) {
// pre-compiled library found
NSURL * libURL = [NSURL fileURLWithPath:libPath];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
NSURL * libURL = [NSURL fileURLWithPath:path_lib];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
metal_library = [ctx->device newLibraryWithURL:libURL error:&error];
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
@ -309,27 +323,30 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
#else
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * sourcePath;
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
NSString * path_source;
NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, ggmlMetalPathResources ? [ggmlMetalPathResources UTF8String] : "nil");
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
if (ggmlMetalPathResources) {
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
if (path_resource) {
path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
} else {
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
}
if (sourcePath == nil) {
if (path_source == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
path_source = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
#endif
#endif // GGML_METAL_EMBED_LIBRARY
@autoreleasepool {
// dictionary of preprocessor macros
@ -2820,6 +2837,11 @@ static struct ggml_backend_i ggml_backend_metal_i = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {

View File

@ -4,9 +4,6 @@
#include <metal_stdlib>
#define GGML_COMMON_IMPL_METAL
#include "ggml-common.h"
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))

View File

@ -202,24 +202,29 @@ namespace dpct
// Version string has the following format:
// a. OpenCL<space><major.minor><space><vendor-specific-information>
// b. <major.minor>
// c. <AmdGcnArchName> e.g gfx1030
std::string ver;
ver = dev.get_info<sycl::info::device::version>();
std::string::size_type i = 0;
while (i < ver.size())
{
while (i < ver.size()) {
if (isdigit(ver[i]))
break;
i++;
}
major = std::stoi(&(ver[i]));
while (i < ver.size())
{
while (i < ver.size()) {
if (ver[i] == '.')
break;
i++;
}
if (i < ver.size()) {
// a. and b.
i++;
minor = std::stoi(&(ver[i]));
} else {
// c.
minor = 0;
}
}
template <typename tag, typename T>
@ -17244,13 +17249,18 @@ static ggml_backend_i ggml_backend_sycl_interface = {
/* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
/* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
/* .cpy_tensor_async = */ ggml_backend_sycl_cpy_tensor_async,
/* .cpy_tensor_async = */ NULL, //ggml_backend_sycl_cpy_tensor_async, // TODO: update for the new interface
/* .synchronize = */ ggml_backend_sycl_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
/* .supports_op = */ ggml_backend_sycl_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_sycl_guid() {

View File

@ -5693,6 +5693,11 @@ static ggml_backend_i ggml_backend_vk_interface = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_vk_graph_compute,
/* .supports_op = */ ggml_backend_vk_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_vk_guid() {

89
ggml.c
View File

@ -11560,8 +11560,6 @@ static void ggml_compute_forward_get_rows_q(
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
@ -11569,7 +11567,7 @@ static void ggml_compute_forward_get_rows_q(
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
const int64_t nr = ggml_nelements(src1);
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
@ -11579,10 +11577,20 @@ static void ggml_compute_forward_get_rows_q(
assert(nb00 == ggml_type_size(type));
assert(ggml_nrows(dst) == nr);
// TODO: multi-thread
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
dequantize_row_q(
@ -11590,8 +11598,6 @@ static void ggml_compute_forward_get_rows_q(
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
}
}
static void ggml_compute_forward_get_rows_f16(
const struct ggml_compute_params * params,
@ -11600,8 +11606,6 @@ static void ggml_compute_forward_get_rows_f16(
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
@ -11609,17 +11613,27 @@ static void ggml_compute_forward_get_rows_f16(
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_fp16_t));
assert(ggml_nrows(dst) == nr);
// TODO: multi-thread
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_fp16_to_fp32_row(
@ -11627,8 +11641,6 @@ static void ggml_compute_forward_get_rows_f16(
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
}
}
static void ggml_compute_forward_get_rows_f32(
const struct ggml_compute_params * params,
@ -11637,8 +11649,6 @@ static void ggml_compute_forward_get_rows_f32(
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
@ -11646,17 +11656,27 @@ static void ggml_compute_forward_get_rows_f32(
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(float));
assert(ggml_nrows(dst) == nr);
// TODO: multi-thread
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_vec_cpy_f32(nc,
@ -11664,8 +11684,6 @@ static void ggml_compute_forward_get_rows_f32(
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
}
}
}
}
static void ggml_compute_forward_get_rows(
const struct ggml_compute_params * params,
@ -17796,7 +17814,7 @@ static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const
node->perf_time_us += time_us_cur;
}
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
int n_tasks = 0;
switch (node->op) {
@ -17877,6 +17895,12 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{
n_tasks = n_threads;
} break;
case GGML_OP_GET_ROWS:
{
// FIXME: the cost of launching additional threads decreases performance with GPU offloading
//n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
} break;
case GGML_OP_SCALE:
case GGML_OP_SET:
case GGML_OP_CONT:
@ -17884,7 +17908,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG:
{
@ -18102,7 +18125,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
/* FINALIZE */
struct ggml_tensor * node = cgraph->nodes[node_n];
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.nth = ggml_get_n_tasks(node, n_threads);
params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
ggml_compute_forward(&params, node);
}
ggml_graph_compute_perf_stats_node(node, state->shared);
@ -18112,7 +18135,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
state->shared->perf_node_start_cycles = ggml_perf_cycles();
state->shared->perf_node_start_time_us = ggml_perf_time_us();
@ -18160,7 +18183,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
/* INIT & COMPUTE */
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_TYPE_INIT,
@ -18225,7 +18248,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
max_tasks = MAX(max_tasks, n_tasks);

10
ggml.h
View File

@ -337,18 +337,18 @@ extern "C" {
struct ggml_object;
struct ggml_context;
// NOTE: always add types at the end of the enum to keep backward compatibility
enum ggml_type {
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
// GGML_TYPE_Q4_2 = 4, support has been removed
// GGML_TYPE_Q4_3 (5) support has been removed
// GGML_TYPE_Q4_3 = 5, support has been removed
GGML_TYPE_Q5_0 = 6,
GGML_TYPE_Q5_1 = 7,
GGML_TYPE_Q8_0 = 8,
GGML_TYPE_Q8_1 = 9,
// k-quantizations
GGML_TYPE_Q2_K = 10,
GGML_TYPE_Q3_K = 11,
GGML_TYPE_Q4_K = 12,
@ -363,9 +363,9 @@ extern "C" {
GGML_TYPE_IQ3_S = 21,
GGML_TYPE_IQ2_S = 22,
GGML_TYPE_IQ4_XS = 23,
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_I8 = 24,
GGML_TYPE_I16 = 25,
GGML_TYPE_I32 = 26,
GGML_TYPE_COUNT,
};

View File

@ -661,6 +661,9 @@ class GGMLQuantizationType(IntEnum):
IQ3_S = 21
IQ2_S = 22
IQ4_XS = 23
I8 = 24
I16 = 25
I32 = 26
class GGUFEndian(IntEnum):
@ -727,6 +730,9 @@ GGML_QUANT_SIZES = {
GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
GGMLQuantizationType.I8: (1, 1),
GGMLQuantizationType.I16: (1, 2),
GGMLQuantizationType.I32: (1, 4),
}

View File

@ -248,6 +248,15 @@ class GGUFReader:
elif ggml_type == GGMLQuantizationType.F16:
item_count = n_elems
item_type = np.float16
elif ggml_type == GGMLQuantizationType.I8:
item_count = n_elems
item_type = np.int8
elif ggml_type == GGMLQuantizationType.I16:
item_count = n_elems
item_type = np.int16
elif ggml_type == GGMLQuantizationType.I32:
item_count = n_elems
item_type = np.int32
else:
item_count = n_bytes
item_type = np.uint8

View File

@ -196,9 +196,6 @@ class GGUFWriter:
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
if raw_dtype is None and tensor_dtype not in (np.float32, np.float16):
raise ValueError("Only F32 and F16 tensors are supported for now")
encoded_name = name.encode("utf8")
self.ti_data += self._pack("Q", len(encoded_name))
self.ti_data += encoded_name
@ -207,7 +204,18 @@ class GGUFWriter:
for i in range(n_dims):
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
if raw_dtype is None:
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
if tensor_dtype == np.float32:
dtype = GGMLQuantizationType.F32
elif tensor_dtype == np.float16:
dtype = GGMLQuantizationType.F16
elif tensor_dtype == np.int8:
dtype = GGMLQuantizationType.I8
elif tensor_dtype == np.int16:
dtype = GGMLQuantizationType.I16
elif tensor_dtype == np.int32:
dtype = GGMLQuantizationType.I32
else:
raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
else:
dtype = raw_dtype
self.ti_data += self._pack("I", dtype)

825
llama.cpp

File diff suppressed because it is too large Load Diff

View File

@ -234,7 +234,8 @@ extern "C" {
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
uint32_t n_ubatch; // physical maximum batch size
uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
@ -377,6 +378,7 @@ extern "C" {
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
@ -664,6 +666,11 @@ extern "C" {
// Set abort callback
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
// Wait until all computations are finished
// This is automatically done when using one of the functions below to obtain the computation results
// and is not necessary to call it explicitly in most cases
LLAMA_API void llama_synchronize(struct llama_context * ctx);
// Token logits obtained from the last call to llama_decode()
// The logits for the last token are stored in the last row
// Logits for which llama_batch.logits[i] == 0 are undefined

View File

@ -2222,8 +2222,8 @@ static void usage(char ** argv) {
int main(int argc, char ** argv) {
test_mode mode = MODE_TEST;
const char * op_name = NULL;
const char * backend = NULL;
const char * op_name_filter = NULL;
const char * backend_filter = NULL;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "test") == 0) {
@ -2232,14 +2232,14 @@ int main(int argc, char ** argv) {
mode = MODE_PERF;
} else if (strcmp(argv[i], "-o") == 0) {
if (i + 1 < argc) {
op_name = argv[++i];
op_name_filter = argv[++i];
} else {
usage(argv);
return 1;
}
} else if (strcmp(argv[i], "-b") == 0) {
if (i + 1 < argc) {
backend = argv[++i];
backend_filter = argv[++i];
} else {
usage(argv);
return 1;
@ -2258,7 +2258,7 @@ int main(int argc, char ** argv) {
for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) {
if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
printf(" Skipping\n");
n_ok++;
continue;
@ -2266,9 +2266,17 @@ int main(int argc, char ** argv) {
ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
GGML_ASSERT(backend != NULL);
if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
printf(" Skipping CPU backend\n");
ggml_backend_free(backend);
n_ok++;
continue;
}
printf(" Backend name: %s\n", ggml_backend_name(backend));
bool ok = test_backend(backend, mode, op_name);
bool ok = test_backend(backend, mode, op_name_filter);
printf(" Backend %s: ", ggml_backend_name(backend));
if (ok) {