mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
support for glm edge model
This commit is contained in:
parent
4f696624a4
commit
6fc90cb727
@ -3817,7 +3817,7 @@ class JaisModel(Model):
|
|||||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
|
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||||
class ChatGLMModel(Model):
|
class ChatGLMModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||||
|
|
||||||
@ -3923,47 +3923,56 @@ class ChatGLMModel(Model):
|
|||||||
|
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||||
vocab_size = hparams["padded_vocab_size"]
|
vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
|
||||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||||
|
|
||||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
if(hparams["partial_rotary_factor"] == 1.0):
|
||||||
|
# only for glm-edge series
|
||||||
|
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||||
|
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||||
|
self.gguf_writer.add_token_list(tokens)
|
||||||
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||||
|
else:
|
||||||
|
# for glm4 series
|
||||||
|
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||||
|
merges = []
|
||||||
|
vocab = {}
|
||||||
|
mergeable_ranks = tokenizer._mergeable_ranks
|
||||||
|
for token, rank in mergeable_ranks.items():
|
||||||
|
vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
|
||||||
|
if len(token) == 1:
|
||||||
|
continue
|
||||||
|
merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||||
|
assert len(merged) >= 2 and len(merged) <= 7
|
||||||
|
merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
|
||||||
|
|
||||||
merges = []
|
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||||||
vocab = {}
|
added_vocab = tokenizer.get_added_vocab()
|
||||||
mergeable_ranks = tokenizer.mergeable_ranks
|
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
||||||
for token, rank in mergeable_ranks.items():
|
|
||||||
vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
|
|
||||||
if len(token) == 1:
|
|
||||||
continue
|
|
||||||
merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
|
|
||||||
assert len(merged) >= 2 and len(merged) <= 7
|
|
||||||
merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
|
|
||||||
|
|
||||||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
for i in range(vocab_size):
|
||||||
added_vocab = tokenizer.get_added_vocab()
|
if i not in reverse_vocab:
|
||||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
tokens.append(f"[PAD{i}]")
|
||||||
|
toktypes.append(gguf.TokenType.UNUSED)
|
||||||
for i in range(vocab_size):
|
elif reverse_vocab[i] in added_vocab:
|
||||||
if i not in reverse_vocab:
|
tokens.append(reverse_vocab[i])
|
||||||
tokens.append(f"[PAD{i}]")
|
if tokenizer.added_tokens_decoder[i].special:
|
||||||
toktypes.append(gguf.TokenType.UNUSED)
|
toktypes.append(gguf.TokenType.CONTROL)
|
||||||
elif reverse_vocab[i] in added_vocab:
|
else:
|
||||||
tokens.append(reverse_vocab[i])
|
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||||
if tokenizer.added_tokens_decoder[i].special:
|
|
||||||
toktypes.append(gguf.TokenType.CONTROL)
|
|
||||||
else:
|
else:
|
||||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
tokens.append(reverse_vocab[i])
|
||||||
else:
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
tokens.append(reverse_vocab[i])
|
|
||||||
toktypes.append(gguf.TokenType.NORMAL)
|
|
||||||
|
|
||||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||||
self.gguf_writer.add_token_list(tokens)
|
self.gguf_writer.add_token_list(tokens)
|
||||||
self.gguf_writer.add_token_types(toktypes)
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||||||
special_vocab.merges = merges
|
special_vocab.merges = merges
|
||||||
# only add special tokens when they were not already loaded from config.json
|
# only add special tokens when they were not already loaded from config.json
|
||||||
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
|
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
|
||||||
@ -3974,14 +3983,14 @@ class ChatGLMModel(Model):
|
|||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||||||
n_head_kv = self.hparams.get("multi_query_group_num", n_head)
|
n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
|
||||||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||||||
self.gguf_writer.add_embedding_length(n_embed)
|
self.gguf_writer.add_embedding_length(n_embed)
|
||||||
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
|
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
|
||||||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
|
||||||
self.gguf_writer.add_head_count(n_head)
|
self.gguf_writer.add_head_count(n_head)
|
||||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
if "attention_dim" in self.hparams:
|
if "attention_dim" in self.hparams:
|
||||||
rope_dim = self.hparams["attention_dim"]
|
rope_dim = self.hparams["attention_dim"]
|
||||||
|
@ -1142,6 +1142,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.OUTPUT,
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_TENSOR.ATTN_NORM,
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.ATTN_QKV,
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
MODEL_TENSOR.ATTN_OUT,
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.FFN_NORM,
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
@ -1303,6 +1303,9 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||||||
{ LLM_TENSOR_OUTPUT, "output" },
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
@ -8869,9 +8872,14 @@ static bool llm_load_tensors(
|
|||||||
auto & layer = model.layers[i];
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
if(model.type == e_model::MODEL_1_6B || model.type == e_model::MODEL_4B){
|
||||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
|
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||||
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||||
|
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||||
|
}else{
|
||||||
|
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
|
||||||
|
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
}
|
||||||
|
|
||||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
||||||
|
|
||||||
@ -15730,22 +15738,28 @@ struct llm_build_context {
|
|||||||
struct ggml_tensor * Qcur = nullptr;
|
struct ggml_tensor * Qcur = nullptr;
|
||||||
struct ggml_tensor * Kcur = nullptr;
|
struct ggml_tensor * Kcur = nullptr;
|
||||||
struct ggml_tensor * Vcur = nullptr;
|
struct ggml_tensor * Vcur = nullptr;
|
||||||
|
if(model.type == e_model::MODEL_1_6B || model.type == e_model::MODEL_4B){
|
||||||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||||
cb(cur, "wqkv", il);
|
cb(Qcur, "Qcur", il);
|
||||||
|
Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||||
if(model.layers[il].bqkv){
|
cb(Kcur, "Kcur", il);
|
||||||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||||
cb(cur, "bqkv", il);
|
cb(Vcur, "Vcur", il);
|
||||||
|
}else{
|
||||||
|
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||||||
|
cb(cur, "wqkv", il);
|
||||||
|
if(model.layers[il].bqkv){
|
||||||
|
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||||
|
cb(cur, "bqkv", il);
|
||||||
|
}
|
||||||
|
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||||
|
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||||
|
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
}
|
}
|
||||||
|
|
||||||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
|
||||||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
|
||||||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
|
||||||
|
|
||||||
cb(Qcur, "Qcur", il);
|
|
||||||
cb(Kcur, "Kcur", il);
|
|
||||||
cb(Vcur, "Vcur", il);
|
|
||||||
//printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
|
//printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
|
||||||
Qcur = ggml_rope_ext(
|
Qcur = ggml_rope_ext(
|
||||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||||||
|
Loading…
Reference in New Issue
Block a user