Merge branch 'master' into server-oai-compat

This commit is contained in:
Georgi Gerganov 2023-11-24 10:54:08 +02:00 committed by GitHub
commit 80724eb0e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 285 additions and 11 deletions

View File

@ -10,7 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics ### Hot topics
- *No hot topics atm. Open to suggestions about what is hot today* - Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
---- ----
@ -422,8 +422,9 @@ Building the program with BLAS support may lead to some performance improvements
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build . cmake --build .
``` ```
- Using `CMake` for Windows: - Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS):
```bash ```bash
set PATH=%HIP_PATH%\bin;%PATH%
mkdir build mkdir build
cd build cd build
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ .. cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..

View File

@ -12,6 +12,7 @@
#include <regex> #include <regex>
#include <sstream> #include <sstream>
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include <cinttypes> #include <cinttypes>
@ -495,6 +496,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.chatml = true; params.chatml = true;
} else if (arg == "--infill") { } else if (arg == "--infill") {
params.infill = true; params.infill = true;
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
params.dump_kv_cache = true;
} else if (arg == "--multiline-input") { } else if (arg == "--multiline-input") {
params.multiline_input = true; params.multiline_input = true;
} else if (arg == "--simple-io") { } else if (arg == "--simple-io") {
@ -835,6 +838,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
#endif #endif
printf(" --verbose-prompt print prompt before generation\n"); printf(" --verbose-prompt print prompt before generation\n");
printf(" -dkvc, --dump-kv-cache\n");
printf(" verbose print of the KV cache\n");
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
@ -1386,3 +1391,77 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
} }
//
// KV cache utils
//
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
seqs[cs_curr[j]] = seqs.size();
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}

View File

@ -122,6 +122,7 @@ struct gpt_params {
bool numa = false; // attempt optimizations that help on some NUMA systems bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation bool verbose_prompt = false; // print prompt tokens before generation
bool infill = false; // use infill mode bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
// multimodal models (see examples/llava) // multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector std::string mmproj = ""; // path to multimodal projector
@ -218,3 +219,13 @@ std::string get_sortable_timestamp();
void dump_non_result_info_yaml( void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx, FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc); const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

BIN
docs/llama-star/idea-arch.key Executable file

Binary file not shown.

Binary file not shown.

View File

@ -1,5 +1,5 @@
// A basic application simulating a server with multiple clients. // A basic application simulating a server with multiple clients.
// The clients submite requests to the server and they are processed in parallel. // The clients submit requests to the server and they are processed in parallel.
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
@ -113,6 +113,8 @@ int main(int argc, char ** argv) {
// insert new requests as soon as the previous one is done // insert new requests as soon as the previous one is done
const bool cont_batching = params.cont_batching; const bool cont_batching = params.cont_batching;
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("parallel", "log")); log_set_target(log_filename_generator("parallel", "log"));
LOG_TEE("Log start\n"); LOG_TEE("Log start\n");
@ -172,6 +174,8 @@ int main(int argc, char ** argv) {
int32_t n_total_gen = 0; int32_t n_total_gen = 0;
int32_t n_cache_miss = 0; int32_t n_cache_miss = 0;
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
const auto t_main_start = ggml_time_us(); const auto t_main_start = ggml_time_us();
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__); LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
@ -201,6 +205,11 @@ int main(int argc, char ** argv) {
LOG_TEE("Processing requests ...\n\n"); LOG_TEE("Processing requests ...\n\n");
while (true) { while (true) {
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
llama_batch_clear(batch); llama_batch_clear(batch);
// decode any currently ongoing sequences // decode any currently ongoing sequences

View File

@ -1112,6 +1112,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results); std::lock_guard<std::mutex> lock(mutex_results);
task_result res; task_result res;
res.id = id; res.id = id;
res.stop = false;
res.error = true; res.error = true;
res.result_json = { { "content", error } }; res.result_json = { { "content", error } };
queue_results.push_back(res); queue_results.push_back(res);
@ -1284,6 +1285,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_tasks); std::lock_guard<std::mutex> lock(mutex_tasks);
task_server task; task_server task;
task.id = id_gen++; task.id = id_gen++;
task.target_id = 0;
task.data = std::move(data); task.data = std::move(data);
task.infill_mode = infill; task.infill_mode = infill;
task.embedding_mode = embedding; task.embedding_mode = embedding;

View File

@ -1,4 +1,5 @@
#include <algorithm> #include <algorithm>
#include <cinttypes>
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <limits> #include <limits>
@ -8057,7 +8058,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
if (tensor->op == GGML_OP_MUL_MAT) { if (tensor->op == GGML_OP_MUL_MAT) {
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
#ifndef NDEBUG #ifndef NDEBUG
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]); fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = " PRId64 ", src1->ne[3] = " PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
#endif #endif
return false; return false;
} }

128
llama.cpp
View File

@ -1280,6 +1280,7 @@ struct llama_kv_cache {
// cannot be freely changed after a slot has been allocated. // cannot be freely changed after a slot has been allocated.
uint32_t head = 0; uint32_t head = 0;
uint32_t size = 0; uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build // computed before each graph build
uint32_t n = 0; uint32_t n = 0;
@ -1504,6 +1505,7 @@ static bool llama_kv_cache_init(
cache.head = 0; cache.head = 0;
cache.size = n_ctx; cache.size = n_ctx;
cache.used = 0;
cache.cells.clear(); cache.cells.clear();
cache.cells.resize(n_ctx); cache.cells.resize(n_ctx);
@ -1605,6 +1607,8 @@ static bool llama_kv_cache_find_slot(
} }
} }
cache.used += n_tokens;
return true; return true;
} }
@ -1625,6 +1629,7 @@ static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.clear();
} }
cache.head = 0; cache.head = 0;
cache.used = 0;
} }
static void llama_kv_cache_seq_rm( static void llama_kv_cache_seq_rm(
@ -1647,6 +1652,9 @@ static void llama_kv_cache_seq_rm(
continue; continue;
} }
if (cache.cells[i].seq_id.empty()) { if (cache.cells[i].seq_id.empty()) {
// keep count of the number of used cells
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1; cache.cells[i].pos = -1;
if (new_head == cache.size) new_head = i; if (new_head == cache.size) new_head = i;
} }
@ -1654,7 +1662,7 @@ static void llama_kv_cache_seq_rm(
} }
// If we freed up a slot, set head to it so searching can start there. // If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size) cache.head = new_head; if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
} }
static void llama_kv_cache_seq_cp( static void llama_kv_cache_seq_cp(
@ -1680,6 +1688,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
for (uint32_t i = 0; i < cache.size; ++i) { for (uint32_t i = 0; i < cache.size; ++i) {
if (!cache.cells[i].has_seq_id(seq_id)) { if (!cache.cells[i].has_seq_id(seq_id)) {
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1; cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i; if (new_head == cache.size) new_head = i;
@ -1690,7 +1699,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
} }
// If we freed up a slot, set head to it so searching can start there. // If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size) cache.head = new_head; if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
} }
static void llama_kv_cache_seq_shift( static void llama_kv_cache_seq_shift(
@ -1711,6 +1720,7 @@ static void llama_kv_cache_seq_shift(
cache.cells[i].delta += delta; cache.cells[i].delta += delta;
if (cache.cells[i].pos < 0) { if (cache.cells[i].pos < 0) {
if (!cache.cells[i].seq_id.empty()) cache.used--;
cache.cells[i].pos = -1; cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i; if (new_head == cache.size) new_head = i;
@ -5469,6 +5479,12 @@ static int llama_decode_internal(
batch.seq_id = seq_id_arr.data(); batch.seq_id = seq_id_arr.data();
} }
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (kv_self.head > kv_self.used + 2*n_tokens) {
kv_self.head = 0;
}
if (!llama_kv_cache_find_slot(kv_self, batch)) { if (!llama_kv_cache_find_slot(kv_self, batch)) {
return 1; return 1;
} }
@ -5479,7 +5495,7 @@ static int llama_decode_internal(
//kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA? //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self))); kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
//printf("kv_self.n = %d\n", kv_self.n); //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
ggml_allocr_reset(lctx.alloc); ggml_allocr_reset(lctx.alloc);
@ -8789,8 +8805,107 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
} }
} }
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
/*.n_max_seq = */ n_max_seq,
/*.token_count = */ 0,
/*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
/*.max_contiguous = */ 0,
/*.max_contiguous_idx = */ -1,
/*.cells = */ nullptr,
/*.cells_sequences = */ nullptr,
};
return result;
}
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
if (view->cells != nullptr) {
free(view->cells);
view->cells = nullptr;
}
if (view->cells_sequences != nullptr) {
free(view->cells_sequences);
view->cells_sequences = nullptr;
}
}
void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
view->n_cells = int32_t(ctx->kv_self.size);
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
view->cells = (struct llama_kv_cache_view_cell *)p;
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_max_seq * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
int32_t token_count = 0;
int32_t curr_contig_idx = -1;
uint32_t max_contig = 0;
int32_t max_contig_idx = -1;
for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_max_seq) {
const size_t curr_size = kv_cells[i].seq_id.size();
token_count += curr_size;
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
if (curr_size > 0) {
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
max_contig = i - curr_contig_idx;
max_contig_idx = curr_contig_idx;
}
curr_contig_idx = -1;
} else if (curr_contig_idx < 0) {
curr_contig_idx = i;
}
int seq_idx = 0;
for (const llama_seq_id it : kv_cells[i].seq_id) {
if (seq_idx >= view->n_max_seq) {
break;
}
cs_curr[seq_idx] = it;
seq_idx++;
}
if (seq_idx != 0) {
used_cells++;
}
for (; seq_idx < view->n_max_seq; seq_idx++) {
cs_curr[seq_idx] = -1;
}
}
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
max_contig_idx = curr_contig_idx;
max_contig = kv_cells.size() - curr_contig_idx;
}
view->max_contiguous = max_contig;
view->max_contiguous_idx = max_contig_idx;
view->token_count = token_count;
view->used_cells = used_cells;
if (uint32_t(used_cells) != ctx->kv_self.used) {
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
__func__, ctx->kv_self.used, used_cells);
}
}
int llama_get_kv_cache_token_count(const struct llama_context * ctx) { int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->kv_self.head; int result = 0;
for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
result += ctx->kv_self.cells[i].seq_id.size();
}
return result;
}
int llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
return ctx->kv_self.used;
} }
void llama_kv_cache_clear(struct llama_context * ctx) { void llama_kv_cache_clear(struct llama_context * ctx) {
@ -8960,10 +9075,12 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
const size_t kv_buf_size = kv_self.buf.size; const size_t kv_buf_size = kv_self.buf.size;
const uint32_t kv_head = kv_self.head; const uint32_t kv_head = kv_self.head;
const uint32_t kv_size = kv_self.size; const uint32_t kv_size = kv_self.size;
const uint32_t kv_used = kv_self.used;
data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
data_ctx->write(&kv_head, sizeof(kv_head)); data_ctx->write(&kv_head, sizeof(kv_head));
data_ctx->write(&kv_size, sizeof(kv_size)); data_ctx->write(&kv_size, sizeof(kv_size));
data_ctx->write(&kv_used, sizeof(kv_used));
if (kv_buf_size) { if (kv_buf_size) {
const size_t elt_size = ggml_element_size(kv_self.k); const size_t elt_size = ggml_element_size(kv_self.k);
@ -9086,10 +9203,12 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
size_t kv_buf_size; size_t kv_buf_size;
uint32_t kv_head; uint32_t kv_head;
uint32_t kv_size; uint32_t kv_size;
uint32_t kv_used;
memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
if (kv_buf_size) { if (kv_buf_size) {
GGML_ASSERT(kv_self.buf.size == kv_buf_size); GGML_ASSERT(kv_self.buf.size == kv_buf_size);
@ -9124,6 +9243,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ctx->kv_self.head = kv_head; ctx->kv_self.head = kv_head;
ctx->kv_self.size = kv_size; ctx->kv_self.size = kv_size;
ctx->kv_self.used = kv_used;
ctx->kv_self.cells.resize(kv_size); ctx->kv_self.cells.resize(kv_size);

57
llama.h
View File

@ -361,9 +361,60 @@ extern "C" {
// KV cache // KV cache
// //
// Returns the number of tokens in the KV cache // Information associated with an individual cell in the KV cache view.
LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx), struct llama_kv_cache_view_cell {
"avoid using this, it will be removed in the future, instead - count the tokens in user code"); // The position for this cell. Takes KV cache shifts into account.
// May be negative if the cell is not populated.
llama_pos pos;
};
// An updateable view of the KV cache.
struct llama_kv_cache_view {
// Number of KV cache cells. This will be the same as the context size.
int32_t n_cells;
// Maximum number of sequences that can exist in a cell. It's not an error
// if there are more sequences in a cell than this value, however they will
// not be visible in the view cells_sequences.
int32_t n_max_seq;
// Number of tokens in the cache. For example, if there are two populated
// cells, the first with 1 sequence id in it and the second with 2 sequence
// ids then you'll have 3 tokens.
int32_t token_count;
// Number of populated cache cells.
int32_t used_cells;
// Maximum contiguous empty slots in the cache.
int32_t max_contiguous;
// Index to the start of the max_contiguous slot range. Can be negative
// when cache is full.
int32_t max_contiguous_idx;
// Information for an individual cell.
struct llama_kv_cache_view_cell * cells;
// The sequences for each cell. There will be n_max_seq items per cell.
llama_seq_id * cells_sequences;
};
// Create an empty KV cache view. (use only for debugging purposes)
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
// Free a KV cache view. (use only for debugging purposes)
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache // Clear the KV cache
LLAMA_API void llama_kv_cache_clear( LLAMA_API void llama_kv_cache_clear(