llama : support RWKV v6 models (#8980)

* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Molly Sophia 2024-09-01 22:38:17 +08:00 committed by GitHub
parent a47667cff4
commit 8f1d81a0b6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 1266 additions and 103 deletions

View File

@ -3,6 +3,7 @@
from __future__ import annotations from __future__ import annotations
import ast
import logging import logging
import argparse import argparse
import contextlib import contextlib
@ -298,9 +299,12 @@ class Model:
gguf.MODEL_TENSOR.POS_EMBD, gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES, gguf.MODEL_TENSOR.TOKEN_TYPES,
gguf.MODEL_TENSOR.SSM_CONV1D, gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
gguf.MODEL_TENSOR.TIME_MIX_W1,
gguf.MODEL_TENSOR.TIME_MIX_W2,
) )
) )
or not name.endswith(".weight") or not new_name.endswith(".weight")
): ):
data_qtype = gguf.GGMLQuantizationType.F32 data_qtype = gguf.GGMLQuantizationType.F32
@ -2716,6 +2720,84 @@ class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2 model_arch = gguf.MODEL_ARCH.STARCODER2
@Model.register("Rwkv6ForCausalLM")
class Rwkv6Model(Model):
model_arch = gguf.MODEL_ARCH.RWKV6
def set_vocab(self):
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
vocab_size = self.hparams.get("vocab_size", 65536)
tokens: list[bytes] = ['<s>'.encode("utf-8")]
toktypes: list[int] = [gguf.TokenType.CONTROL]
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
parts = line.split(' ')
assert len(parts) >= 3
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
token = token.encode("utf-8") if isinstance(token, str) else token
assert isinstance(token, bytes)
assert len(token) == token_len
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
tokens.append(token_text.encode("utf-8"))
toktypes.append(gguf.TokenType.NORMAL)
remainder = vocab_size - len(tokens)
assert remainder >= 0
for i in range(len(tokens), vocab_size):
tokens.append(f"[PAD{i}]".encode("utf-8"))
toktypes.append(gguf.TokenType.UNUSED)
self.gguf_writer.add_tokenizer_model("rwkv")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
head_size = self.hparams["head_size"]
hidden_size = self.hparams["hidden_size"]
layer_norm_eps = self.hparams["layer_norm_epsilon"]
rescale_every_n_layers = self.hparams["rescale_every"]
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
time_mix_extra_dim = 64 if hidden_size == 4096 else 32
time_decay_extra_dim = 128 if hidden_size == 4096 else 64
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
new_name = self.map_tensor_name(name)
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
new_name += ".weight"
if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
data_torch = data_torch.transpose(0, 1)
if new_name.endswith("time_mix_w2.weight"):
data_torch = data_torch.permute(0, 2, 1)
rescale_every_n_layers = self.hparams["rescale_every"]
if rescale_every_n_layers > 0:
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
yield (new_name, data_torch)
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM") @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
class MambaModel(Model): class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA model_arch = gguf.MODEL_ARCH.MAMBA

View File

@ -514,6 +514,7 @@ extern "C" {
GGML_OP_WIN_UNPART, GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS, GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS, GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV,
GGML_OP_UNARY, GGML_OP_UNARY,
@ -548,6 +549,7 @@ extern "C" {
GGML_UNARY_OP_SILU, GGML_UNARY_OP_SILU,
GGML_UNARY_OP_HARDSWISH, GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID, GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_COUNT, GGML_UNARY_OP_COUNT,
}; };
@ -1165,6 +1167,14 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_exp(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_exp_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows // normalize along rows
GGML_API struct ggml_tensor * ggml_norm( GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1913,6 +1923,15 @@ extern "C" {
struct ggml_tensor * pw, struct ggml_tensor * pw,
struct ggml_tensor * ph); struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_rwkv_wkv(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * r,
struct ggml_tensor * tf,
struct ggml_tensor * td,
struct ggml_tensor * state);
// custom operators // custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *); typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);

View File

@ -2422,6 +2422,7 @@ inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x
// TODO: optimize performance // TODO: optimize performance
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
static const float GELU_COEF_A = 0.044715f; static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f; static const float GELU_QUICK_COEF = -1.702f;
@ -2932,6 +2933,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"WIN_UNPART", "WIN_UNPART",
"GET_REL_POS", "GET_REL_POS",
"ADD_REL_POS", "ADD_REL_POS",
"RWKV_WKV",
"UNARY", "UNARY",
@ -2950,7 +2952,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 78, "GGML_OP_COUNT != 78"); static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -3024,6 +3026,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"win_unpart(x)", "win_unpart(x)",
"get_rel_pos(x)", "get_rel_pos(x)",
"add_rel_pos(x)", "add_rel_pos(x)",
"rwkv_wkv(k, v, r, tf, td, s)",
"unary(x)", "unary(x)",
@ -3042,7 +3045,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 78, "GGML_OP_COUNT != 78"); static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -3061,9 +3064,10 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"SILU", "SILU",
"HARDSWISH", "HARDSWISH",
"HARDSIGMOID", "HARDSIGMOID",
"EXP",
}; };
static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13"); static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@ -5464,6 +5468,19 @@ struct ggml_tensor * ggml_hardsigmoid(
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID); return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
} }
// ggml exp
struct ggml_tensor * ggml_exp(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
}
struct ggml_tensor * ggml_exp_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
}
// ggml_norm // ggml_norm
static struct ggml_tensor * ggml_norm_impl( static struct ggml_tensor * ggml_norm_impl(
@ -7727,6 +7744,59 @@ struct ggml_tensor * ggml_add_rel_pos_inplace(
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true); return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
} }
// ggml_rwkv_wkv
struct ggml_tensor * ggml_rwkv_wkv(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * r,
struct ggml_tensor * tf,
struct ggml_tensor * td,
struct ggml_tensor * state) {
GGML_ASSERT(ggml_is_contiguous(k));
GGML_ASSERT(ggml_is_contiguous(v));
GGML_ASSERT(ggml_is_contiguous(r));
GGML_ASSERT(ggml_is_contiguous(tf));
GGML_ASSERT(ggml_is_contiguous(td));
GGML_ASSERT(ggml_is_contiguous(state));
const int64_t S = k->ne[0];
const int64_t H = k->ne[2];
const int64_t n_tokens = k->ne[3];
const int64_t n_seqs = state->ne[1];
{
GGML_ASSERT(k->ne[1] == 1);
GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
// TODO: RWKV v4 and v5
GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
}
bool is_node = false;
if (k->grad || v->grad || r->grad || tf->grad || td->grad || state->grad) {
GGML_ABORT("fatal error"); // TODO: implement backward
is_node = true;
}
// concat output and new_state
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_RWKV_WKV;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = k;
result->src[1] = v;
result->src[2] = r;
result->src[3] = tf;
result->src[4] = td;
result->src[5] = state;
return result;
}
// ggml_unary // ggml_unary
static struct ggml_tensor * ggml_unary_impl( static struct ggml_tensor * ggml_unary_impl(
@ -12126,6 +12196,48 @@ static void ggml_compute_forward_hardsigmoid(
} }
} }
static void ggml_compute_forward_exp_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
for (int i = 0; i < n; i++) {
ggml_vec_exp_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_exp(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_exp_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_norm // ggml_compute_forward_norm
@ -16704,6 +16816,10 @@ static void ggml_compute_forward_unary(
{ {
ggml_compute_forward_hardsigmoid(params, dst); ggml_compute_forward_hardsigmoid(params, dst);
} break; } break;
case GGML_UNARY_OP_EXP:
{
ggml_compute_forward_exp(params, dst);
} break;
default: default:
{ {
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
@ -16839,6 +16955,96 @@ static void ggml_compute_forward_add_rel_pos(
} }
} }
// ggml_compute_forward_rwkv_wkv
static void ggml_compute_forward_rwkv_wkv_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const size_t T = dst->src[1]->ne[3];
const size_t C = dst->ne[0];
const size_t H = dst->src[1]->ne[2];
const size_t n_seqs = dst->src[5]->ne[1];
float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T;
if (params->ith != 0) {
return;
}
memset(dst_data, 0, T * C * sizeof(float));
float * k = (float *) dst->src[0]->data;
float * v = (float *) dst->src[1]->data;
float * r = (float *) dst->src[2]->data;
float * time_faaaa = (float *) dst->src[3]->data;
float * time_decay = (float *) dst->src[4]->data;
size_t t_stride = H * (C / H);
size_t h_stride = C / H;
size_t h_stride_2d = (C / H) * (C / H);
// basically fused operations:
// dst = r @ (time_faaaa * (k @ v) + state),
// state = time_decay * state + (k @ v),
// recursive through each token
for (size_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = (C / H) * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
for (size_t h = 0; h < H; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (size_t i = 0; i < C / H; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_i_offset = h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float r_val = r[t_h_i_offset];
float time_faaaa_val = time_faaaa[h_i_offset];
// RWKV v6: different time_decay for each token.
float time_decay_val = time_decay[t_h_i_offset];
for (size_t j = 0; j < C / H; j ++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val * time_faaaa_val + prev_state_val;
dst_data[t_h_j_offset] += temp_val * r_val;
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
}
}
}
}
}
static void ggml_compute_forward_rwkv_wkv(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rwkv_wkv_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_map_unary // ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32( static void ggml_compute_forward_map_unary_f32(
@ -17490,6 +17696,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_add_rel_pos(params, tensor); ggml_compute_forward_add_rel_pos(params, tensor);
} break; } break;
case GGML_OP_RWKV_WKV:
{
ggml_compute_forward_rwkv_wkv(params, tensor);
} break;
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
{ {
ggml_unary_op_f32_t fun; ggml_unary_op_f32_t fun;
@ -18607,12 +18817,22 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
zero_table); zero_table);
} }
} break; } break;
case GGML_UNARY_OP_EXP:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx, tensor, tensor->grad),
zero_table);
}
} break;
default: default:
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
} break; } break;
case GGML_OP_GET_REL_POS: case GGML_OP_GET_REL_POS:
case GGML_OP_ADD_REL_POS: case GGML_OP_ADD_REL_POS:
case GGML_OP_RWKV_WKV:
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY: case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32: case GGML_OP_MAP_CUSTOM1_F32:
@ -19036,6 +19256,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_HARDSIGMOID: case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_EXP:
{ {
n_tasks = 1; n_tasks = 1;
} break; } break;
@ -19127,6 +19348,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_WIN_PART: case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART: case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS: case GGML_OP_GET_REL_POS:
case GGML_OP_RWKV_WKV:
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY: case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32: case GGML_OP_MAP_CUSTOM1_F32:

View File

@ -94,6 +94,9 @@ class Keys:
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id" DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping" ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping" FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
class Attention: class Attention:
HEAD_COUNT = "{arch}.attention.head_count" HEAD_COUNT = "{arch}.attention.head_count"
@ -132,6 +135,9 @@ class Keys:
TIME_STEP_RANK = "{arch}.ssm.time_step_rank" TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms" DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"
class Tokenizer: class Tokenizer:
MODEL = "tokenizer.ggml.model" MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre" PRE = "tokenizer.ggml.pre"
@ -207,6 +213,7 @@ class MODEL_ARCH(IntEnum):
GEMMA = auto() GEMMA = auto()
GEMMA2 = auto() GEMMA2 = auto()
STARCODER2 = auto() STARCODER2 = auto()
RWKV6 = auto()
MAMBA = auto() MAMBA = auto()
XVERSE = auto() XVERSE = auto()
COMMAND_R = auto() COMMAND_R = auto()
@ -270,6 +277,29 @@ class MODEL_TENSOR(IntEnum):
SSM_A = auto() SSM_A = auto()
SSM_D = auto() SSM_D = auto()
SSM_OUT = auto() SSM_OUT = auto()
TIME_MIX_W1 = auto()
TIME_MIX_W2 = auto()
TIME_MIX_LERP_X = auto()
TIME_MIX_LERP_K = auto()
TIME_MIX_LERP_V = auto()
TIME_MIX_LERP_R = auto()
TIME_MIX_LERP_G = auto()
TIME_MIX_LERP_W = auto()
TIME_MIX_FIRST = auto()
TIME_MIX_DECAY = auto()
TIME_MIX_DECAY_W1 = auto()
TIME_MIX_DECAY_W2 = auto()
TIME_MIX_KEY = auto()
TIME_MIX_VALUE = auto()
TIME_MIX_RECEPTANCE = auto()
TIME_MIX_GATE = auto()
TIME_MIX_LN = auto()
TIME_MIX_OUTPUT = auto()
CHANNEL_MIX_LERP_K = auto()
CHANNEL_MIX_LERP_R = auto()
CHANNEL_MIX_KEY = auto()
CHANNEL_MIX_RECEPTANCE = auto()
CHANNEL_MIX_VALUE = auto()
ATTN_Q_A = auto() ATTN_Q_A = auto()
ATTN_Q_B = auto() ATTN_Q_B = auto()
ATTN_KV_A_MQA = auto() ATTN_KV_A_MQA = auto()
@ -337,6 +367,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GEMMA: "gemma", MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.STARCODER2: "starcoder2", MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse", MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r", MODEL_ARCH.COMMAND_R: "command-r",
@ -400,6 +431,29 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a", MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b", MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa", MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
@ -856,6 +910,37 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.RWKV6: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_LERP_X,
MODEL_TENSOR.TIME_MIX_LERP_K,
MODEL_TENSOR.TIME_MIX_LERP_V,
MODEL_TENSOR.TIME_MIX_LERP_R,
MODEL_TENSOR.TIME_MIX_LERP_G,
MODEL_TENSOR.TIME_MIX_LERP_W,
MODEL_TENSOR.TIME_MIX_FIRST,
MODEL_TENSOR.TIME_MIX_DECAY,
MODEL_TENSOR.TIME_MIX_DECAY_W1,
MODEL_TENSOR.TIME_MIX_DECAY_W2,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_GATE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.CHANNEL_MIX_LERP_K,
MODEL_TENSOR.CHANNEL_MIX_LERP_R,
MODEL_TENSOR.CHANNEL_MIX_KEY,
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
MODEL_TENSOR.CHANNEL_MIX_VALUE,
],
MODEL_ARCH.MAMBA: [ MODEL_ARCH.MAMBA: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -670,6 +670,18 @@ class GGUFWriter:
def add_expert_weights_scale(self, value: float) -> None: def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_rescale_every_n_layers(self, count: int) -> None:
self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count)
def add_time_mix_extra_dim(self, dim: int) -> None:
self.add_uint32(Keys.LLM.TIME_MIX_EXTRA_DIM.format(arch=self.arch), dim)
def add_time_decay_extra_dim(self, dim: int) -> None:
self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim)
def add_wkv_head_size(self, size: int) -> None:
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
def add_layer_norm_eps(self, value: float) -> None: def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value) self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)

View File

@ -27,6 +27,7 @@ class TensorNameMap:
"embedding.word_embeddings", # chatglm "embedding.word_embeddings", # chatglm
"transformer.token_embeddings", # openelm "transformer.token_embeddings", # openelm
"shared", # t5 "shared", # t5
"rwkv.embeddings", # rwkv
), ),
# Token type embeddings # Token type embeddings
@ -40,6 +41,7 @@ class TensorNameMap:
"embeddings.LayerNorm", # bert "embeddings.LayerNorm", # bert
"emb_ln", # nomic-bert "emb_ln", # nomic-bert
"transformer.norm", # openelm "transformer.norm", # openelm
"rwkv.blocks.0.pre_ln", # rwkv
), ),
# Position embeddings # Position embeddings
@ -57,6 +59,7 @@ class TensorNameMap:
"word_embeddings_for_head", # persimmon "word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2 "lm_head.linear", # phi2
"output_layer", # chatglm "output_layer", # chatglm
"head", # rwkv
), ),
# Output norm # Output norm
@ -76,6 +79,7 @@ class TensorNameMap:
"encoder.final_layernorm", # chatglm "encoder.final_layernorm", # chatglm
"transformer.norm", # openelm "transformer.norm", # openelm
"model.norm", # nemotron "model.norm", # nemotron
"rwkv.ln_out", # rwkv
), ),
# Rope frequencies # Rope frequencies
@ -108,12 +112,14 @@ class TensorNameMap:
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"encoder.layers.{bid}.input_layernorm", # chatglm "encoder.layers.{bid}.input_layernorm", # chatglm
"transformer.layers.{bid}.attn_norm", # openelm "transformer.layers.{bid}.attn_norm", # openelm
"rwkv.blocks.{bid}.ln1", # rwkv
), ),
# Attention norm 2 # Attention norm 2
MODEL_TENSOR.ATTN_NORM_2: ( MODEL_TENSOR.ATTN_NORM_2: (
"transformer.h.{bid}.ln_attn", # falcon40b "transformer.h.{bid}.ln_attn", # falcon40b
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
"rwkv.blocks.{bid}.ln2", # rwkv
), ),
# Attention query-key-value # Attention query-key-value
@ -434,6 +440,98 @@ class TensorNameMap:
"backbone.layers.{bid}.mixer.out_proj", "backbone.layers.{bid}.mixer.out_proj",
), ),
MODEL_TENSOR.TIME_MIX_W1: (
"rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_W2: (
"rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_LERP_X: (
"rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_LERP_K: (
"rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_LERP_V: (
"rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_LERP_R: (
"rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_LERP_G: (
"rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_LERP_W: (
"rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_FIRST: (
"rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_DECAY: (
"rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_DECAY_W1: (
"rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_DECAY_W2: (
"rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
),
MODEL_TENSOR.TIME_MIX_KEY: (
"rwkv.blocks.{bid}.attention.key", # rwkv
),
MODEL_TENSOR.TIME_MIX_VALUE: (
"rwkv.blocks.{bid}.attention.value", # rwkv
),
MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
"rwkv.blocks.{bid}.attention.receptance", # rwkv
),
MODEL_TENSOR.TIME_MIX_GATE: (
"rwkv.blocks.{bid}.attention.gate", # rwkv
),
MODEL_TENSOR.TIME_MIX_LN: (
"rwkv.blocks.{bid}.attention.ln_x", # rwkv
),
MODEL_TENSOR.TIME_MIX_OUTPUT: (
"rwkv.blocks.{bid}.attention.output", # rwkv
),
MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
"rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
),
MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
"rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
),
MODEL_TENSOR.CHANNEL_MIX_KEY: (
"rwkv.blocks.{bid}.feed_forward.key", # rwkv
),
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
"rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
),
MODEL_TENSOR.CHANNEL_MIX_VALUE: (
"rwkv.blocks.{bid}.feed_forward.value", # rwkv
),
MODEL_TENSOR.ATTN_Q_A: ( MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2 "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
), ),

View File

@ -66,6 +66,7 @@ extern "C" {
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
}; };
// pre-tokenization types // pre-tokenization types

View File

@ -58,17 +58,17 @@ struct naive_trie {
auto res = children.find(c); auto res = children.find(c);
if (res != children.end()) { if (res != children.end()) {
return res->second.get_longest_prefix(key, len, offset + 1); return res->second.get_longest_prefix(key, len, offset + 1);
} else { }
return std::make_pair(key, offset); return std::make_pair(key, offset);
} }
} const struct naive_trie * traverse(const char c) const {
struct naive_trie * traverse(const char c) {
auto res = children.find(c); auto res = children.find(c);
if (res != children.end()) { if (res != children.end()) {
return &res->second; return &res->second;
} else {
return NULL;
} }
return NULL;
} }
std::map<char, struct naive_trie> children; std::map<char, struct naive_trie> children;
bool has_value; bool has_value;
@ -843,7 +843,7 @@ struct llm_tokenizer_ugm {
// traverse the token matcher trie to find a matching token // traverse the token matcher trie to find a matching token
bool single_codepoint_token_found = false; bool single_codepoint_token_found = false;
const struct best_tokenization & current_best = tokenization_results[input_offset]; const struct best_tokenization & current_best = tokenization_results[input_offset];
struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); const struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]);
while (prefix_offset <= input_len && node != NULL) { while (prefix_offset <= input_len && node != NULL) {
// check if we found valid token in prefix // check if we found valid token in prefix
@ -1097,6 +1097,111 @@ private:
struct naive_trie token_matcher; struct naive_trie token_matcher;
}; };
//
// RWKV tokenizer
//
static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
std::vector<uint8_t> output;
output.reserve(escaped.size());
// Parser state
bool escaping = false;
uint8_t hex_remaining = 0;
uint8_t hex_acc = 0;
// Step through characters, performing parsing
for (const char & c : escaped) {
// If we're parsing a hex code, interpret the next character
if (hex_remaining != 0) {
uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
hex_acc = (hex_acc << 4) + value;
hex_remaining -= 1;
if (hex_remaining == 0) {
output.push_back(hex_acc);
hex_acc = 0;
}
continue;
}
// If we got an escape character, interpret it
if (escaping) {
if (c == 't') {
output.push_back('\t');
} else if (c == 'n') {
output.push_back('\n');
} else if (c == 'r') {
output.push_back('\r');
} else if (c == 'x') {
hex_remaining = 2;
} else {
output.push_back(c);
}
escaping = false;
continue;
}
if (c == '\\') {
escaping = true;
continue;
}
output.push_back(c);
}
return output;
}
struct llm_tokenizer_rwkv {
llm_tokenizer_rwkv(const llama_vocab & vocab): vocab(vocab) {
// RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
// For now, we decode the vocab here into the lookup we'll use for tokenization.
// build trie
for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
const auto & token = vocab.id_to_token[id];
const auto data = llama_unescape_rwkv_token(token.text);
token_matcher.insert((const char *) data.data(), data.size(), id);
}
}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
uint32_t position = 0;
while (position < text.size()) {
const struct naive_trie * node = token_matcher.traverse(text[position]);
if (node == NULL) {
// no matching token found, add unknown token
output.push_back(vocab.special_unk_id);
position += 1;
continue;
}
// traverse the trie to find the longest matching token
uint32_t token_id = 0;
uint32_t token_length = 0;
while (node != NULL) {
if (node->has_value) {
token_id = node->value;
token_length = position + 1;
}
node = node->traverse(text[++position]);
}
// add the longest matching token
output.push_back(token_id);
position = token_length;
}
}
const llama_vocab & vocab;
struct naive_trie token_matcher;
};
// //
// (de-) tokenize // (de-) tokenize
// //
@ -1401,6 +1506,23 @@ std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab,
output.push_back(vocab.special_eos_id); output.push_back(vocab.special_eos_id);
} }
} break; } break;
case LLAMA_VOCAB_TYPE_RWKV:
{
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
llm_tokenizer_rwkv tokenizer(vocab);
tokenizer.tokenize(raw_text, output);
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token);
}
}
} break;
case LLAMA_VOCAB_TYPE_NONE: case LLAMA_VOCAB_TYPE_NONE:
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
@ -1616,6 +1738,17 @@ int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token
} }
break; break;
} }
case LLAMA_VOCAB_TYPE_RWKV: {
std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
// If we don't have enough space, return an error
if (result.size() > (size_t)length) {
return -(int)result.size();
}
memcpy(buf, result.data(), result.size());
return (int)result.size();
}
default: default:
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }

View File

@ -212,6 +212,7 @@ enum llm_arch {
LLM_ARCH_JAIS, LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON, LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE, LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -259,6 +260,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_JAIS, "jais" },
{ LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
@ -295,6 +297,9 @@ enum llm_kv {
LLM_KV_DECODER_START_TOKEN_ID, LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING, LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING, LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_TIME_MIX_EXTRA_DIM,
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV, LLM_KV_ATTENTION_HEAD_COUNT_KV,
@ -330,6 +335,8 @@ enum llm_kv {
LLM_KV_SSM_TIME_STEP_RANK, LLM_KV_SSM_TIME_STEP_RANK,
LLM_KV_SSM_DT_B_C_RMS, LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_MODEL,
LLM_KV_TOKENIZER_PRE, LLM_KV_TOKENIZER_PRE,
LLM_KV_TOKENIZER_LIST, LLM_KV_TOKENIZER_LIST,
@ -389,11 +396,14 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" }, { LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
{ LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" },
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -429,6 +439,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
{ LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
{ LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" },
{ LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
{ LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
{ LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
@ -518,6 +530,29 @@ enum llm_tensor {
LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT, LLM_TENSOR_SSM_OUT,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
LLM_TENSOR_TIME_MIX_LERP_X,
LLM_TENSOR_TIME_MIX_LERP_W,
LLM_TENSOR_TIME_MIX_LERP_K,
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,
LLM_TENSOR_TIME_MIX_DECAY_W2,
LLM_TENSOR_TIME_MIX_KEY,
LLM_TENSOR_TIME_MIX_VALUE,
LLM_TENSOR_TIME_MIX_RECEPTANCE,
LLM_TENSOR_TIME_MIX_GATE,
LLM_TENSOR_TIME_MIX_LN,
LLM_TENSOR_TIME_MIX_OUTPUT,
LLM_TENSOR_CHANNEL_MIX_LERP_K,
LLM_TENSOR_CHANNEL_MIX_LERP_R,
LLM_TENSOR_CHANNEL_MIX_KEY,
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
LLM_TENSOR_CHANNEL_MIX_VALUE,
LLM_TENSOR_ATTN_Q_A, LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B, LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA, LLM_TENSOR_ATTN_KV_A_MQA,
@ -1339,6 +1374,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_RWKV6,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
{ LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" },
{ LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" },
{ LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" },
{ LLM_TENSOR_TIME_MIX_LERP_W, "blk.%d.time_mix_lerp_w" },
{ LLM_TENSOR_TIME_MIX_LERP_K, "blk.%d.time_mix_lerp_k" },
{ LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" },
{ LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" },
{ LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" },
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
{ LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" },
{ LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" },
{ LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" },
{ LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" },
{ LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" },
{ LLM_TENSOR_TIME_MIX_LN, "blk.%d.time_mix_ln" },
{ LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" },
{ LLM_TENSOR_CHANNEL_MIX_LERP_K, "blk.%d.channel_mix_lerp_k" },
{ LLM_TENSOR_CHANNEL_MIX_LERP_R, "blk.%d.channel_mix_lerp_r" },
{ LLM_TENSOR_CHANNEL_MIX_KEY, "blk.%d.channel_mix_key" },
{ LLM_TENSOR_CHANNEL_MIX_VALUE, "blk.%d.channel_mix_value" },
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2151,6 +2220,7 @@ enum e_model {
MODEL_1B, MODEL_1B,
MODEL_1_3B, MODEL_1_3B,
MODEL_1_4B, MODEL_1_4B,
MODEL_1_6B,
MODEL_2B, MODEL_2B,
MODEL_2_8B, MODEL_2_8B,
MODEL_3B, MODEL_3B,
@ -2228,6 +2298,12 @@ struct llama_hparams {
float f_attn_logit_softcapping = 50.0f; float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f; float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
float rope_attn_factor = 1.0f; float rope_attn_factor = 1.0f;
float rope_freq_base_train; float rope_freq_base_train;
float rope_freq_scale_train; float rope_freq_scale_train;
@ -2291,6 +2367,11 @@ struct llama_hparams {
if (this->ssm_dt_rank != other.ssm_dt_rank) return true; if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true; if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true;
if (this->rescale_every_n_layers != other.rescale_every_n_layers) return true;
if (this->time_mix_extra_dim != other.time_mix_extra_dim) return true;
if (this->time_decay_extra_dim != other.time_decay_extra_dim) return true;
if (this->wkv_head_size != other.wkv_head_size) return true;
if (this->dec_start_token_id != other.dec_start_token_id) return true; if (this->dec_start_token_id != other.dec_start_token_id) return true;
const float EPSILON = 1e-9f; const float EPSILON = 1e-9f;
@ -2354,16 +2435,26 @@ struct llama_hparams {
} }
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size // corresponds to Mamba's conv_states size or RWKV's token_shift states size
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
} else {
// TODO: maybe support other convolution strides than 1 // TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
} }
}
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
} else {
// corresponds to Mamba's ssm_states size // corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner; return ssm_d_state * ssm_d_inner;
} }
}
}; };
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable"); static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
@ -2501,6 +2592,36 @@ struct llama_layer {
struct ggml_tensor * ssm_conv1d_b; struct ggml_tensor * ssm_conv1d_b;
struct ggml_tensor * ssm_dt_b; struct ggml_tensor * ssm_dt_b;
// rwkv
struct ggml_tensor * time_mix_w1;
struct ggml_tensor * time_mix_w2;
struct ggml_tensor * time_mix_lerp_x;
struct ggml_tensor * time_mix_lerp_w;
struct ggml_tensor * time_mix_lerp_k;
struct ggml_tensor * time_mix_lerp_v;
struct ggml_tensor * time_mix_lerp_r;
struct ggml_tensor * time_mix_lerp_g;
struct ggml_tensor * time_mix_first;
struct ggml_tensor * time_mix_decay;
struct ggml_tensor * time_mix_decay_w1;
struct ggml_tensor * time_mix_decay_w2;
struct ggml_tensor * time_mix_key;
struct ggml_tensor * time_mix_value;
struct ggml_tensor * time_mix_receptance;
struct ggml_tensor * time_mix_gate;
struct ggml_tensor * time_mix_ln;
struct ggml_tensor * time_mix_ln_b;
struct ggml_tensor * time_mix_output;
struct ggml_tensor * channel_mix_lerp_k;
struct ggml_tensor * channel_mix_lerp_r;
struct ggml_tensor * channel_mix_key;
struct ggml_tensor * channel_mix_receptance;
struct ggml_tensor * channel_mix_value;
// long rope factors // long rope factors
struct ggml_tensor * rope_long = nullptr; struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr; struct ggml_tensor * rope_short = nullptr;
@ -3426,7 +3547,7 @@ static bool llama_kv_cache_find_slot(
const uint32_t n_seq_tokens = batch.n_seq_tokens; const uint32_t n_seq_tokens = batch.n_seq_tokens;
if (cache.recurrent) { if (cache.recurrent) {
// For recurrent state architectures (like Mamba), // For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence. // each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous. // A slot should be always be contiguous.
@ -3675,7 +3796,7 @@ static bool llama_kv_cache_seq_rm(
if (p0 < 0) p0 = 0; if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// models like Mamba can't have a state partially erased // models like Mamba or RWKV can't have a state partially erased
if (cache.recurrent) { if (cache.recurrent) {
if (seq_id >= (int64_t) cache.size) { if (seq_id >= (int64_t) cache.size) {
// could be fatal // could be fatal
@ -3811,7 +3932,7 @@ static void llama_kv_cache_seq_add(
if (p0 == p1) return; if (p0 == p1) return;
if (cache.recurrent) { if (cache.recurrent) {
// for Mamba-like models, only the pos needs to be shifted // for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) cache.size) { if (0 <= seq_id && seq_id < (int64_t) cache.size) {
const int32_t tail_id = cache.cells[seq_id].tail; const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) { if (tail_id >= 0) {
@ -3860,7 +3981,7 @@ static void llama_kv_cache_seq_div(
if (p0 == p1) return; if (p0 == p1) return;
if (cache.recurrent) { if (cache.recurrent) {
// for Mamba-like models, only the pos needs to be changed // for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) cache.size) { if (0 <= seq_id && seq_id < (int64_t) cache.size) {
const int32_t tail_id = cache.cells[seq_id].tail; const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) { if (tail_id >= 0) {
@ -5051,6 +5172,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_1B: return "1B"; case MODEL_1B: return "1B";
case MODEL_1_3B: return "1.3B"; case MODEL_1_3B: return "1.3B";
case MODEL_1_4B: return "1.4B"; case MODEL_1_4B: return "1.4B";
case MODEL_1_6B: return "1.6B";
case MODEL_2B: return "2B"; case MODEL_2B: return "2B";
case MODEL_2_8B: return "2.8B"; case MODEL_2_8B: return "2.8B";
case MODEL_3B: return "3B"; case MODEL_3B: return "3B";
@ -5097,6 +5219,7 @@ static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
case LLAMA_VOCAB_TYPE_BPE: return "BPE"; case LLAMA_VOCAB_TYPE_BPE: return "BPE";
case LLAMA_VOCAB_TYPE_WPM: return "WPM"; case LLAMA_VOCAB_TYPE_WPM: return "WPM";
case LLAMA_VOCAB_TYPE_UGM: return "UGM"; case LLAMA_VOCAB_TYPE_UGM: return "UGM";
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
default: return "unknown"; default: return "unknown";
} }
} }
@ -5793,6 +5916,26 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_RWKV6:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1_6B; break;
case 32:
switch (hparams.n_embd) {
case 2560: model.type = e_model::MODEL_3B; break;
case 4096: model.type = e_model::MODEL_7B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 61: model.type = e_model::MODEL_14B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0; default: (void)0;
} }
@ -5922,6 +6065,15 @@ static void llm_load_vocab(
} }
#endif #endif
} }
} else if (tokenizer_model == "rwkv") {
vocab.type = LLAMA_VOCAB_TYPE_RWKV;
// default special tokens
vocab.special_bos_id = -1;
vocab.special_eos_id = -1;
vocab.special_unk_id = -1;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
} else { } else {
throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
} }
@ -6053,6 +6205,12 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
vocab.tokenizer_add_bos = false; vocab.tokenizer_add_bos = false;
vocab.tokenizer_add_eos = true; vocab.tokenizer_add_eos = true;
} else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = false;
vocab.tokenizer_add_bos = false;
vocab.tokenizer_add_eos = false;
} else { } else {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} }
@ -6157,6 +6315,10 @@ static void llm_load_vocab(
} }
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
vocab.linefeed_id = vocab.special_pad_id; vocab.linefeed_id = vocab.special_pad_id;
} else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) {
const std::vector<int> ids = llama_tokenize_internal(vocab, "\n", false);
GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
vocab.linefeed_id = ids[0];
} else { } else {
const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
@ -8203,6 +8365,68 @@ static bool llm_load_tensors(
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} }
} break; } break;
case LLM_ARCH_RWKV6:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// Block 0, LN0
model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
// output
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
const int time_mix_extra_dim = hparams.time_mix_extra_dim;
const int time_decay_extra_dim = hparams.time_decay_extra_dim;
const int head_size = hparams.wkv_head_size;
const int attn_hidden_size = n_embd;
const int ffn_size = hparams.n_ff_arr[0];
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
layer.time_mix_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5});
layer.time_mix_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5});
layer.time_mix_lerp_x = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1});
layer.time_mix_lerp_w = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1});
layer.time_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1});
layer.time_mix_lerp_v = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1});
layer.time_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1});
layer.time_mix_lerp_g = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1});
layer.time_mix_first = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size});
layer.time_mix_decay = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd});
layer.time_mix_decay_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim});
layer.time_mix_decay_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size});
layer.time_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd});
layer.time_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd});
layer.time_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd});
layer.time_mix_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd});
layer.time_mix_ln = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd});
layer.time_mix_ln_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd});
layer.time_mix_output = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size});
layer.channel_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1});
layer.channel_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1});
layer.channel_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size});
layer.channel_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd});
layer.channel_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd});
}
} break;
default: default:
throw std::runtime_error("unknown architecture"); throw std::runtime_error("unknown architecture");
} }
@ -9162,6 +9386,171 @@ static struct ggml_tensor * llm_build_mamba(
return cur; return cur;
} }
static struct ggml_tensor * llm_build_rwkv6_time_mix(
struct llama_context & lctx,
struct ggml_context * ctx,
const struct llama_layer * layer,
struct ggml_tensor * cur,
struct ggml_tensor * x_prev,
struct ggml_tensor ** wkv_state) {
size_t n_embed = cur->ne[0];
size_t n_seq_tokens = cur->ne[1];
size_t n_seqs = cur->ne[2];
size_t head_size = layer->time_mix_first->ne[0];
size_t head_count = layer->time_mix_first->ne[1];
size_t n_tokens = n_seqs * n_seq_tokens;
struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
sx = ggml_reshape_2d(ctx, sx, n_embed, n_tokens);
cur = ggml_reshape_2d(ctx, cur, n_embed, n_tokens);
struct ggml_tensor * xxx = ggml_add(ctx, ggml_mul(ctx, sx, layer->time_mix_lerp_x), cur);
xxx = ggml_reshape_4d(
ctx,
ggml_tanh(
ctx,
ggml_mul_mat(ctx, layer->time_mix_w1, xxx)
),
layer->time_mix_w1->ne[1] / 5, 1, 5, n_tokens
);
xxx = ggml_cont(ctx, ggml_permute(ctx, xxx, 0, 1, 3, 2));
xxx = ggml_mul_mat(
ctx,
ggml_reshape_4d(
ctx,
layer->time_mix_w2,
layer->time_mix_w2->ne[0], layer->time_mix_w2->ne[1], 1, 5
),
xxx
);
struct ggml_tensor *mw = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], 0);
struct ggml_tensor *mk = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * sizeof(float));
struct ggml_tensor *mv = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 2 * sizeof(float));
struct ggml_tensor *mr = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 3 * sizeof(float));
struct ggml_tensor *mg = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 4 * sizeof(float));
struct ggml_tensor * xw = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mw, layer->time_mix_lerp_w),
sx
),
cur
);
struct ggml_tensor * xk = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mk, layer->time_mix_lerp_k),
sx
),
cur
);
struct ggml_tensor * xv = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mv, layer->time_mix_lerp_v),
sx
),
cur
);
struct ggml_tensor * xr = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mr, layer->time_mix_lerp_r),
sx
),
cur
);
struct ggml_tensor * xg = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mg, layer->time_mix_lerp_g),
sx
),
cur
);
struct ggml_tensor * r = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr), head_size, 1, head_count, n_tokens);
struct ggml_tensor * k = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk), 1, head_size, head_count, n_tokens);
struct ggml_tensor * v = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv), head_size, 1, head_count, n_tokens);
struct ggml_tensor * g = ggml_silu(
ctx,
llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg)
);
struct ggml_tensor * w = ggml_mul_mat(
ctx,
layer->time_mix_decay_w2,
ggml_tanh(
ctx,
ggml_mul_mat(ctx, layer->time_mix_decay_w1, xw)
)
);
w = ggml_add(ctx, w, ggml_reshape_1d(ctx, layer->time_mix_decay, n_embed));
w = ggml_exp(ctx, ggml_neg(ctx, ggml_exp(ctx, w)));
w = ggml_reshape_4d(ctx, w, 1, head_size, head_count, n_tokens);
k = ggml_transpose(ctx, k);
v = ggml_transpose(ctx, v);
r = ggml_transpose(ctx, r);
struct ggml_tensor * wkv_output = ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
cur = ggml_view_1d(ctx, wkv_output, n_embed * n_tokens, 0);
*wkv_state = ggml_view_1d(ctx, wkv_output, n_embed * head_size * n_seqs, n_embed * n_tokens * sizeof(float));
// group norm with head_count groups
cur = ggml_reshape_3d(ctx, cur, n_embed / head_count, head_count, n_tokens);
cur = ggml_norm(ctx, cur, 64e-5f);
// Convert back to regular vectors.
cur = ggml_reshape_2d(ctx, cur, n_embed, n_tokens);
cur = ggml_add(ctx, ggml_mul(ctx, cur, layer->time_mix_ln), layer->time_mix_ln_b);
cur = ggml_mul(ctx, cur, g);
cur = llm_build_lora_mm(lctx, ctx, layer->time_mix_output, cur);
return ggml_reshape_3d(ctx, cur, n_embed, n_seq_tokens, n_seqs);
}
static struct ggml_tensor * llm_build_rwkv6_channel_mix(
struct llama_context & lctx,
struct ggml_context * ctx,
const struct llama_layer * layer,
struct ggml_tensor * cur,
struct ggml_tensor * x_prev) {
struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
struct ggml_tensor * xk = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_k), cur);
struct ggml_tensor * xr = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_r), cur);
struct ggml_tensor * r = ggml_sigmoid(ctx, llm_build_lora_mm(lctx, ctx, layer->channel_mix_receptance, xr));
struct ggml_tensor * k = ggml_sqr(
ctx,
ggml_relu(
ctx,
llm_build_lora_mm(lctx, ctx, layer->channel_mix_key, xk)
)
);
return ggml_mul(ctx, r, llm_build_lora_mm(lctx, ctx, layer->channel_mix_value, k));
}
struct llm_build_context { struct llm_build_context {
const llama_model & model; const llama_model & model;
llama_context & lctx; llama_context & lctx;
@ -14683,6 +15072,117 @@ struct llm_build_context {
return gf; return gf;
} }
ggml_cgraph * build_rwkv6() {
ggml_cgraph *gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// Token shift state dimensions should be 2 * n_emb
GGML_ASSERT(n_embd == hparams.n_embd_k_s() / 2);
const int64_t n_seqs = batch.n_seqs;
const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(batch.equal_seqs);
GGML_ASSERT(n_tokens == n_seq_tokens * n_seqs);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
struct ggml_tensor * state_copy = build_inp_s_copy();
struct ggml_tensor * state_mask = build_inp_s_mask();
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
// (ab)using the KV cache to store the states
struct ggml_tensor * token_shift = llm_build_copy_mask_state(ctx0,
gf, kv_self.k_l[il], state_copy, state_mask,
hparams.n_embd_k_s(), kv_self.size, kv_head, n_kv, n_seqs);
struct ggml_tensor * wkv_states = llm_build_copy_mask_state(ctx0,
gf, kv_self.v_l[il], state_copy, state_mask,
hparams.n_embd_v_s(), kv_self.size, kv_head, n_kv, n_seqs);
cur = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
token_shift = ggml_reshape_3d(ctx0, token_shift, n_embd, 2, n_seqs);
struct ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
struct ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
struct ggml_tensor * x_norm_att = llm_build_norm(ctx0, cur, hparams, layer->attn_norm, layer->attn_norm_b, LLM_NORM, cb, il);
struct ggml_tensor * x_prev = ggml_concat(
ctx0,
att_shift,
ggml_view_3d(ctx0, x_norm_att, n_embd, n_seq_tokens - 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], 0),
1
);
cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states));
ggml_build_forward_expand(gf, cur);
ggml_build_forward_expand(
gf,
ggml_cpy(
ctx0,
wkv_states,
ggml_view_1d(
ctx0,
kv_self.v_l[il],
hparams.n_embd_v_s() * n_seqs,
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
)
)
);
struct ggml_tensor * x_norm_ffn = llm_build_norm(ctx0, cur, hparams, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, cb, il);
x_prev = ggml_concat(
ctx0,
ffn_shift,
ggml_view_3d(ctx0, x_norm_ffn, n_embd, n_seq_tokens - 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], 0),
1
);
cur = ggml_add(ctx0, cur, llm_build_rwkv6_channel_mix(lctx, ctx0, layer, x_norm_ffn, x_prev));
ggml_build_forward_expand(gf, cur);
struct ggml_tensor * last_norm_att = ggml_view_3d(ctx0, x_norm_att, n_embd, 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_att));
struct ggml_tensor * last_norm_ffn = ggml_view_3d(ctx0, x_norm_ffn, n_embd, 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_ffn));
token_shift = ggml_concat(ctx0, last_norm_att, last_norm_ffn, 1);
ggml_build_forward_expand(
gf,
ggml_cpy(
ctx0,
ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * 2, 0),
ggml_view_1d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self.k_l[il]))
)
);
if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
cur = ggml_scale(ctx0, cur, 0.5F);
}
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1);
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
}; };
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) { static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@ -14929,6 +15429,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_exaone(); result = llm.build_exaone();
} break; } break;
case LLM_ARCH_RWKV6:
{
result = llm.build_rwkv6();
} break;
default: default:
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
@ -16973,6 +17477,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// NOTE: can't use LLM_TN here because the layer number is not known // NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ssm_conv1d.weight") == std::string::npos; quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
// do not quantize RWKV's time_mix_first tensors
quantize &= name.find("time_mix_first.weight") == std::string::npos;
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
// do not quantize relative position bias (T5) // do not quantize relative position bias (T5)
quantize &= name.find("attn_rel_b.weight") == std::string::npos; quantize &= name.find("attn_rel_b.weight") == std::string::npos;
@ -17977,6 +18486,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_T5: case LLM_ARCH_T5:
case LLM_ARCH_T5ENCODER: case LLM_ARCH_T5ENCODER:
case LLM_ARCH_JAIS: case LLM_ARCH_JAIS:
case LLM_ARCH_RWKV6:
return LLAMA_ROPE_TYPE_NONE; return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values // use what we call a normal RoPE, operating on pairs of consecutive head values
@ -18145,6 +18655,7 @@ llama_token llama_model_decoder_start_token(const struct llama_model * model) {
bool llama_model_is_recurrent(const struct llama_model * model) { bool llama_model_is_recurrent(const struct llama_model * model) {
switch (model->arch) { switch (model->arch) {
case LLM_ARCH_MAMBA: return true; case LLM_ARCH_MAMBA: return true;
case LLM_ARCH_RWKV6: return true;
default: return false; default: return false;
} }
} }