mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
wip
This commit is contained in:
parent
33a5c8e37c
commit
9127800d83
@ -1329,11 +1329,19 @@ static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads)
|
||||
|
||||
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
||||
|
||||
uint64_t t_decode_total = 0;
|
||||
uint64_t t_sync_total = 0;
|
||||
for (int i = 0; i < n_gen; i++) {
|
||||
uint64_t t_start = get_time_ns();
|
||||
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
|
||||
uint64_t t_decode = get_time_ns();
|
||||
llama_synchronize(ctx);
|
||||
uint64_t t_sync = get_time_ns();
|
||||
t_decode_total += t_decode - t_start;
|
||||
t_sync_total += t_sync - t_decode;
|
||||
token = std::rand() % n_vocab;
|
||||
}
|
||||
//printf("decode: %lu us, sync: %lu us\n", t_decode_total / 1000 / n_gen, t_sync_total / 1000 / n_gen);
|
||||
}
|
||||
|
||||
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
|
||||
|
@ -130,22 +130,10 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
|
||||
}
|
||||
return res;
|
||||
#else
|
||||
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
cudaError_t err;
|
||||
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
|
||||
{
|
||||
err = cudaMallocManaged(ptr, size);
|
||||
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr) {
|
||||
return cudaMallocManaged(ptr, size);
|
||||
}
|
||||
else
|
||||
{
|
||||
err = cudaMalloc(ptr, size);
|
||||
}
|
||||
return err;
|
||||
#else
|
||||
return cudaMalloc(ptr, size);
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
204
src/llama.cpp
204
src/llama.cpp
@ -2739,8 +2739,10 @@ struct llama_context {
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
ggml_backend_sched_t sched = nullptr;
|
||||
|
||||
std::vector<uint8_t> buf_compute_meta_next;
|
||||
//std::vector<uint8_t> buf_compute_meta_next;
|
||||
struct ggml_cgraph * gf_next = nullptr;
|
||||
int pos_next = -1;
|
||||
std::future<int> fut_next;
|
||||
|
||||
ggml_abort_callback abort_callback = nullptr;
|
||||
void * abort_callback_data = nullptr;
|
||||
@ -8446,15 +8448,14 @@ struct llm_build_context {
|
||||
pooling_type (cparams.pooling_type),
|
||||
rope_type (hparams.rope_type),
|
||||
cb (cb),
|
||||
buf_compute_meta (prepare_only ? lctx.buf_compute_meta_next : lctx.buf_compute_meta) {
|
||||
// all initializations should be done in init()
|
||||
if (prepare_only) {
|
||||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||||
n_kv = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self) + 1, pad)));
|
||||
}
|
||||
buf_compute_meta (lctx.buf_compute_meta) {
|
||||
//buf_compute_meta (prepare_only ? lctx.buf_compute_meta_next : lctx.buf_compute_meta) {
|
||||
// all initializations should be done in init()
|
||||
if (prepare_only) {
|
||||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||||
n_kv = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self) + 1, pad)));
|
||||
}
|
||||
|
||||
void init() {
|
||||
//printf("n_kv: %d, kv_head: %d [%d]\n", n_kv, kv_head, prepare_only);
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_compute_meta.size(),
|
||||
/*.mem_buffer =*/ buf_compute_meta.data(),
|
||||
@ -8480,11 +8481,8 @@ struct llm_build_context {
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
}
|
||||
|
||||
void free() {
|
||||
if (ctx0) {
|
||||
ggml_free(ctx0);
|
||||
ctx0 = nullptr;
|
||||
}
|
||||
~llm_build_context() {
|
||||
ggml_free(ctx0);
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_k_shift() {
|
||||
@ -13767,12 +13765,8 @@ static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const
|
||||
|
||||
struct llm_build_context llm(lctx, dummy, cb, false);
|
||||
|
||||
llm.init();
|
||||
|
||||
struct ggml_cgraph * result = llm.build_defrag(ids);
|
||||
|
||||
llm.free();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -13784,12 +13778,8 @@ static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
|
||||
|
||||
struct llm_build_context llm(lctx, dummy, cb, false);
|
||||
|
||||
llm.init();
|
||||
|
||||
struct ggml_cgraph * result = llm.build_k_shift();
|
||||
|
||||
llm.free();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -13801,12 +13791,8 @@ static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
|
||||
|
||||
struct llm_build_context llm(lctx, dummy, cb, false);
|
||||
|
||||
llm.init();
|
||||
|
||||
struct ggml_cgraph * result = llm.build_s_copy();
|
||||
|
||||
llm.free();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -13817,6 +13803,8 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
bool prepare_only = false) {
|
||||
const auto & model = lctx.model;
|
||||
|
||||
//printf("llama_build_graph [%d]\n", prepare_only);
|
||||
|
||||
// this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
|
||||
llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
|
||||
if (il >= 0) {
|
||||
@ -13852,8 +13840,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
struct llm_build_context llm(lctx, batch, cb, worst_case, prepare_only);
|
||||
|
||||
llm.init();
|
||||
|
||||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
{
|
||||
@ -14022,8 +14008,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
result = llm.append_pooling(result);
|
||||
}
|
||||
|
||||
llm.free();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -14548,6 +14532,13 @@ static int llama_decode_internal(
|
||||
llama_batch batch_all, // TODO: rename back to batch
|
||||
bool prepare_only = false) {
|
||||
|
||||
if (!prepare_only && lctx.fut_next.valid()) {
|
||||
//int64_t t_start = ggml_time_us();
|
||||
lctx.fut_next.wait();
|
||||
//int64_t t_end = ggml_time_us();
|
||||
//printf("waited %ld us\n", t_end - t_start);
|
||||
}
|
||||
|
||||
lctx.is_encoding = false;
|
||||
const uint32_t n_tokens_all = batch_all.n_tokens;
|
||||
|
||||
@ -14584,10 +14575,14 @@ static int llama_decode_internal(
|
||||
const auto n_ubatch = cparams.n_ubatch;
|
||||
|
||||
// TODO: simplify or deprecate
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id *> seq_id_arr;
|
||||
std::vector<std::vector<llama_seq_id>> seq_id;
|
||||
static std::vector<llama_pos> pos;
|
||||
static std::vector<int32_t> n_seq_id;
|
||||
static std::vector<llama_seq_id *> seq_id_arr;
|
||||
static std::vector<std::vector<llama_seq_id>> seq_id;
|
||||
//pos.clear();
|
||||
//n_seq_id.clear();
|
||||
//seq_id_arr.clear();
|
||||
//seq_id.clear();
|
||||
|
||||
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
|
||||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||||
@ -14605,7 +14600,7 @@ static int llama_decode_internal(
|
||||
}
|
||||
|
||||
// reserve output buffer
|
||||
if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
|
||||
if (!prepare_only && llama_output_reserve(lctx, n_outputs) < n_outputs) {
|
||||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
|
||||
return -2;
|
||||
};
|
||||
@ -14624,7 +14619,8 @@ static int llama_decode_internal(
|
||||
}
|
||||
}
|
||||
|
||||
if (n_tokens_all != 1) {
|
||||
if (lctx.gf_next && (n_tokens_all != 1 || batch_all.all_pos_0 != lctx.pos_next)) {
|
||||
//printf("wasted graph %d (need %d)\n", lctx.pos_next, batch_all.all_pos_0);
|
||||
lctx.gf_next = nullptr;
|
||||
}
|
||||
|
||||
@ -14644,7 +14640,7 @@ static int llama_decode_internal(
|
||||
};
|
||||
|
||||
// count the outputs in this u_batch
|
||||
{
|
||||
if (!prepare_only) {
|
||||
int32_t n_outputs_new = 0;
|
||||
|
||||
if (u_batch.logits && !embd_pooled) {
|
||||
@ -14664,78 +14660,78 @@ static int llama_decode_internal(
|
||||
lctx.n_outputs = n_outputs_new;
|
||||
}
|
||||
|
||||
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
GGML_ASSERT(n_threads > 0);
|
||||
if (!prepare_only) {
|
||||
// helpers for smoother batch API transition
|
||||
// after deprecating the llama_eval calls, these will be removed
|
||||
if (u_batch.pos == nullptr) {
|
||||
pos.resize(n_tokens);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
|
||||
}
|
||||
|
||||
// helpers for smoother batch API transition
|
||||
// after deprecating the llama_eval calls, these will be removed
|
||||
if (u_batch.pos == nullptr) {
|
||||
pos.resize(n_tokens);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
|
||||
u_batch.pos = pos.data();
|
||||
}
|
||||
|
||||
u_batch.pos = pos.data();
|
||||
}
|
||||
if (u_batch.seq_id == nullptr) {
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_id.resize(n_tokens);
|
||||
seq_id_arr.resize(n_tokens);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
n_seq_id[i] = 1;
|
||||
seq_id[i].resize(1);
|
||||
seq_id[i][0] = u_batch.all_seq_id;
|
||||
seq_id_arr[i] = seq_id[i].data();
|
||||
}
|
||||
|
||||
if (u_batch.seq_id == nullptr) {
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_id.resize(n_tokens);
|
||||
seq_id_arr.resize(n_tokens);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
n_seq_id[i] = 1;
|
||||
seq_id[i].resize(1);
|
||||
seq_id[i][0] = u_batch.all_seq_id;
|
||||
seq_id_arr[i] = seq_id[i].data();
|
||||
u_batch.n_seq_id = n_seq_id.data();
|
||||
u_batch.seq_id = seq_id_arr.data();
|
||||
}
|
||||
|
||||
u_batch.n_seq_id = n_seq_id.data();
|
||||
u_batch.seq_id = seq_id_arr.data();
|
||||
}
|
||||
// non-causal masks do not use the KV cache
|
||||
if (hparams.causal_attn) {
|
||||
//llama_kv_cache_update(&lctx);
|
||||
|
||||
// non-causal masks do not use the KV cache
|
||||
if (hparams.causal_attn && !prepare_only) {
|
||||
llama_kv_cache_update(&lctx);
|
||||
// if we have enough unused cells before the current head ->
|
||||
// better to start searching from the beginning of the cache, hoping to fill it
|
||||
if (kv_self.head > kv_self.used + 2*n_tokens) {
|
||||
kv_self.head = 0;
|
||||
}
|
||||
|
||||
// if we have enough unused cells before the current head ->
|
||||
// better to start searching from the beginning of the cache, hoping to fill it
|
||||
if (kv_self.head > kv_self.used + 2*n_tokens) {
|
||||
kv_self.head = 0;
|
||||
}
|
||||
if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!kv_self.recurrent) {
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||||
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
|
||||
//kv_self.n = llama_kv_cache_cell_max(kv_self);
|
||||
if (!kv_self.recurrent) {
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||||
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
|
||||
//kv_self.n = llama_kv_cache_cell_max(kv_self);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||||
|
||||
|
||||
ggml_cgraph * gf = lctx.gf_next;
|
||||
|
||||
if (!gf) {
|
||||
//printf("building %d\n", u_batch.all_pos_0);
|
||||
ggml_backend_sched_reset(lctx.sched);
|
||||
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
||||
gf = llama_build_graph(lctx, u_batch, false, prepare_only);
|
||||
ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
||||
if (prepare_only) {
|
||||
//printf("prepared %d\n", u_batch.all_pos_0);
|
||||
lctx.gf_next = gf;
|
||||
lctx.pos_next = u_batch.all_pos_0;
|
||||
return 0;
|
||||
}
|
||||
} else {
|
||||
lctx.gf_next = nullptr;
|
||||
//printf("using cached graph %d\n", u_batch.all_pos_0);
|
||||
}
|
||||
|
||||
if (prepare_only) {
|
||||
lctx.gf_next = gf;
|
||||
return 0;
|
||||
}
|
||||
|
||||
lctx.gf_next = nullptr;
|
||||
|
||||
|
||||
// the output is always the last tensor in the graph
|
||||
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
||||
@ -14761,9 +14757,13 @@ static int llama_decode_internal(
|
||||
}
|
||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||
|
||||
|
||||
llama_set_inputs(lctx, u_batch);
|
||||
|
||||
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
GGML_ASSERT(n_threads > 0);
|
||||
|
||||
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
||||
|
||||
llama_graph_compute(lctx, gf, n_threads);
|
||||
|
||||
// update the kv ring buffer
|
||||
@ -14856,21 +14856,28 @@ static int llama_decode_internal(
|
||||
if (fragmentation > cparams.defrag_thold) {
|
||||
//LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
|
||||
|
||||
llama_kv_cache_defrag(kv_self);
|
||||
//llama_kv_cache_defrag(kv_self);
|
||||
}
|
||||
}
|
||||
|
||||
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
||||
// overlap with device computation.
|
||||
ggml_backend_sched_reset(lctx.sched);
|
||||
if (true && n_tokens_all == 1 && !prepare_only) {
|
||||
//int64_t t_prepare_start_us = ggml_time_us();
|
||||
|
||||
if (n_tokens_all == 1 && !prepare_only) {
|
||||
// prepare graph for the next token
|
||||
llama_token next_token_dummy = 0;
|
||||
llama_token * next_token_dummy = (llama_token *) 0x1;
|
||||
llama_pos n_past = batch_all.all_pos_0 + 1;
|
||||
llama_seq_id seq_id = 0;
|
||||
llama_batch batch_next = llama_batch_get_one(&next_token_dummy, 1, n_past, seq_id);
|
||||
llama_decode_internal(lctx, batch_next, true);
|
||||
llama_seq_id seq_id = batch_all.all_seq_id;
|
||||
llama_batch batch_next = llama_batch_get_one(next_token_dummy, 1, n_past, seq_id);
|
||||
|
||||
//llama_decode_internal(lctx, batch_next, true);
|
||||
lctx.fut_next = std::async(std::launch::async, llama_decode_internal, std::ref(lctx), batch_next, true);
|
||||
|
||||
//int64_t t_prepare_us = ggml_time_us() - t_prepare_start_us;
|
||||
//printf("prepare time: %ld us\n", t_prepare_us);
|
||||
} else {
|
||||
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
||||
// overlap with device computation.
|
||||
ggml_backend_sched_reset(lctx.sched);
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -16977,7 +16984,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
// buffer used to store the computation graph and the tensor meta data
|
||||
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
|
||||
ctx->buf_compute_meta_next.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
|
||||
//ctx->buf_compute_meta_next.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
|
||||
|
||||
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
|
||||
bool pipeline_parallel =
|
||||
@ -18564,6 +18571,7 @@ int32_t llama_decode(
|
||||
}
|
||||
|
||||
void llama_synchronize(struct llama_context * ctx) {
|
||||
//printf("llama_synchronize\n");
|
||||
ggml_backend_sched_synchronize(ctx->sched);
|
||||
|
||||
// FIXME: if multiple single tokens are evaluated without a synchronization,
|
||||
|
Loading…
Reference in New Issue
Block a user