ggml, llama : avoid heavy V transpose + improvements (#775)

ggml :

- added ggml_view_3d()
- ggml_view_tensor() now inherits the stride too
- reimplement ggml_cpy() to account for dst stride
- no longer require tensor->data to be memory aligned

llama :

- compute RoPE on 32-bit tensors (should be more accurate)
- store RoPE-ed K in the KV cache
- store transposed V in the KV cache (significant speed-up)
- avoid unnecessary Q copy
This commit is contained in:
Georgi Gerganov 2023-04-05 22:07:33 +03:00 committed by GitHub
parent 3416298929
commit 986b6ce9f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 222 additions and 166 deletions

309
ggml.c
View File

@ -3219,7 +3219,8 @@ struct ggml_tensor * ggml_new_tensor_impl(
/*.pad =*/ { 0 }, /*.pad =*/ { 0 },
}; };
ggml_assert_aligned(result->data); // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
//ggml_assert_aligned(result->data);
for (int i = 0; i < n_dims; i++) { for (int i = 0; i < n_dims; i++) {
result->ne[i] = ne[i]; result->ne[i] = ne[i];
@ -3620,7 +3621,14 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
struct ggml_tensor * ggml_view_tensor( struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx, struct ggml_context * ctx,
const struct ggml_tensor * src) { const struct ggml_tensor * src) {
return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
result->nb[0] = src->nb[0];
result->nb[1] = src->nb[1];
result->nb[2] = src->nb[2];
result->nb[3] = src->nb[3];
return result;
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@ -4510,6 +4518,37 @@ struct ggml_tensor * ggml_view_2d(
return result; return result;
} }
// ggml_view_3d
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1,
size_t nb2,
size_t offset) {
if (a->grad) {
GGML_ASSERT(false); // gradient propagation is not supported
}
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = result->nb[2]*ne2;
result->op = GGML_OP_VIEW;
result->grad = NULL;
result->src0 = a;
result->src1 = NULL; // TODO: maybe store the offset here?
return result;
}
// ggml_permute // ggml_permute
struct ggml_tensor * ggml_permute( struct ggml_tensor * ggml_permute(
@ -4845,7 +4884,6 @@ static void ggml_compute_forward_dup_f16(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0); GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -4862,85 +4900,96 @@ static void ggml_compute_forward_dup_f16(
const size_t nb02 = src0->nb[2]; const size_t nb02 = src0->nb[2];
const size_t nb03 = src0->nb[3]; const size_t nb03 = src0->nb[3];
if (ggml_is_contiguous(src0) && src0->type == dst->type) { const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
const size_t nb2 = dst->nb[2];
const size_t nb3 = dst->nb[3];
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
return; return;
} }
if (src0->nb[0] == sizeof(ggml_fp16_t)) { if (src0->type == dst->type &&
if (dst->type == GGML_TYPE_F16) { src0->ne[0] == dst->ne[0] &&
size_t id = 0; src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
const size_t rs = ne00*nb00; // copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i01 = 0; i01 < ne01; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; memcpy(
char * dst_ptr = (char *) dst->data + id*rs; ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
memcpy(dst_ptr, src0_ptr, rs); rs);
id++;
}
} }
} }
} else if (dst->type == GGML_TYPE_F32) { }
size_t id = 0; return;
float * dst_ptr = (float *) dst->data; }
for (int64_t i03 = 0; i03 < ne03; i03++) { // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); // dst counters
id++; int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
} }
} }
} }
} }
} else {
GGML_ASSERT(false); // TODO: implement
} }
} else { } else {
//printf("%s: this is not optimal - fix me\n", __func__); GGML_ASSERT(false); // TODO: implement
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
id++;
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} }
} }
@ -4949,7 +4998,6 @@ static void ggml_compute_forward_dup_f32(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0); GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -4966,85 +5014,76 @@ static void ggml_compute_forward_dup_f32(
const size_t nb02 = src0->nb[2]; const size_t nb02 = src0->nb[2];
const size_t nb03 = src0->nb[3]; const size_t nb03 = src0->nb[3];
if (ggml_is_contiguous(src0) && src0->type == dst->type) { const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
const size_t nb2 = dst->nb[2];
const size_t nb3 = dst->nb[3];
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
return; return;
} }
if (src0->nb[0] == sizeof(float)) { // dst counters
if (dst->type == GGML_TYPE_F32) { int64_t i10 = 0;
size_t id = 0; int64_t i11 = 0;
const size_t rs = ne00*nb00; int64_t i12 = 0;
int64_t i13 = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) { if (dst->type == GGML_TYPE_F32) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; for (int64_t i01 = 0; i01 < ne01; i01++) {
char * dst_ptr = (char *) dst->data + id*rs; for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, rs); memcpy(dst_ptr, src0_ptr, sizeof(float));
id++; if (++i10 == dst->ne[0]) {
} i10 = 0;
} if (++i11 == dst->ne[1]) {
} i11 = 0;
} else if (dst->type == GGML_TYPE_F16) { if (++i12 == dst->ne[2]) {
size_t id = 0; i12 = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; if (++i13 == dst->ne[3]) {
i13 = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) { }
for (int64_t i02 = 0; i02 < ne02; i02++) { }
for (int64_t i01 = 0; i01 < ne01; i01++) { }
for (int64_t i00 = 0; i00 < ne00; i00++) { }
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); }
}
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); }
id++; }
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
if (++i10 == dst->ne[0]) {
i10 = 0;
if (++i11 == dst->ne[1]) {
i11 = 0;
if (++i12 == dst->ne[2]) {
i12 = 0;
if (++i13 == dst->ne[3]) {
i13 = 0;
}
}
}
} }
} }
} }
} }
} else {
GGML_ASSERT(false); // TODO: implement
} }
} else { } else {
//printf("%s: this is not optimal - fix me\n", __func__); GGML_ASSERT(false); // TODO: implement
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
id++;
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} }
} }

10
ggml.h
View File

@ -558,6 +558,16 @@ struct ggml_tensor * ggml_view_2d(
size_t nb1, // row stride in bytes size_t nb1, // row stride in bytes
size_t offset); size_t offset);
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
struct ggml_tensor * ggml_permute( struct ggml_tensor * ggml_permute(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,

View File

@ -810,37 +810,35 @@ static bool llama_eval_internal(
// self-attention // self-attention
{ {
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); // compute Q and K and RoPE them
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
// store key and value to memory // store key and value to memory
if (N >= 1) { {
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); // compute the transposed [N, n_embd] V matrix
struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_embd, (ggml_element_size(kv_self.v)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
} }
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q = struct ggml_tensor * Q =
ggml_permute(ctx0, ggml_permute(ctx0,
ggml_rope(ctx0, Qcur,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
n_past, n_rot, 0),
0, 2, 1, 3); 0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K = struct ggml_tensor * K =
ggml_permute(ctx0, ggml_permute(ctx0,
ggml_rope(ctx0, ggml_reshape_3d(ctx0,
ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N),
n_embd/n_head, n_head, n_past + N),
n_past, n_rot, 1),
0, 2, 1, 3); 0, 2, 1, 3);
// K * Q // K * Q
@ -858,18 +856,23 @@ static bool llama_eval_internal(
// KQ = soft_max(KQ_masked) // KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() // split cached V into n_head heads
struct ggml_tensor * V_trans = struct ggml_tensor * V =
ggml_cpy(ctx0, ggml_view_3d(ctx0, kv_self.v,
ggml_permute(ctx0, n_past + N, n_embd/n_head, n_head,
ggml_reshape_3d(ctx0, n_ctx*ggml_element_size(kv_self.v),
ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.v)*n_embd), n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
n_embd/n_head, n_head, n_past + N), il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max #if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif
// KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
@ -955,9 +958,13 @@ static bool llama_eval_internal(
ggml_build_forward_expand(&gf, inpL); ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute (ctx0, &gf); ggml_graph_compute (ctx0, &gf);
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
//ggml_graph_print(&gf);
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) { //if (n_past%100 == 0) {
// ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//} //}
//embd_w.resize(n_vocab*N); //embd_w.resize(n_vocab*N);