plamo convert

This commit is contained in:
okada 2023-12-17 15:23:59 +09:00
parent 4c585b4c6c
commit b2330f57e2
3 changed files with 106 additions and 15 deletions

View File

@ -182,6 +182,8 @@ class Model:
return QwenModel return QwenModel
if model_architecture == "MixtralForCausalLM": if model_architecture == "MixtralForCausalLM":
return MixtralModel return MixtralModel
if model_architecture == "PlamoForCausalLM":
return PlamoModel
return Model return Model
def _is_model_safetensors(self) -> bool: def _is_model_safetensors(self) -> bool:
@ -221,6 +223,8 @@ class Model:
return gguf.MODEL_ARCH.QWEN return gguf.MODEL_ARCH.QWEN
if arch == "MixtralForCausalLM": if arch == "MixtralForCausalLM":
return gguf.MODEL_ARCH.LLAMA return gguf.MODEL_ARCH.LLAMA
if arch == "PlamoForCausalLM":
return gguf.MODEL_ARCH.PLAMO
raise NotImplementedError(f'Architecture "{arch}" not supported!') raise NotImplementedError(f'Architecture "{arch}" not supported!')
@ -980,11 +984,72 @@ class QwenModel(Model):
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data) self.gguf_writer.add_tensor(new_name, data)
class PlamoModel(Model):
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name("PLaMo")
self.gguf_writer.add_context_length(4096) # not in config.json
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
def write_tensors(self):
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
if "self_attn.rotary_emb.inv_freq" in name:
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######
def parse_args() -> argparse.Namespace: def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file") parser = argparse.ArgumentParser(
description="Convert a huggingface model to a GGML compatible file")
parser.add_argument( parser.add_argument(
"--vocab-only", action="store_true", "--vocab-only", action="store_true",
help="extract only the vocab", help="extract only the vocab",

View File

@ -95,6 +95,7 @@ class MODEL_ARCH(IntEnum):
BLOOM = auto() BLOOM = auto()
STABLELM = auto() STABLELM = auto()
QWEN = auto() QWEN = auto()
PLAMO = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -140,6 +141,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.BLOOM: "bloom", MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm", MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen", MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.PLAMO: "plamo",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -347,6 +349,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.PLAMO: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [ MODEL_ARCH.GPT2: [
# TODO # TODO
], ],

View File

@ -75,6 +75,7 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.output.LayerNorm", # bert "encoder.layer.{bid}.attention.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi "model.layers.{bid}.ln1", # yi
"model.layers.layers.{bid}.norm", # plamo
), ),
# Attention norm 2 # Attention norm 2
@ -98,6 +99,7 @@ class TensorNameMap:
"layers.{bid}.attention.wq", # llama-pth "layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert "encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j "transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
), ),
# Attention key # Attention key
@ -106,6 +108,7 @@ class TensorNameMap:
"layers.{bid}.attention.wk", # llama-pth "layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert "encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j "transformer.h.{bid}.attn.k_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
), ),
# Attention value # Attention value
@ -114,6 +117,7 @@ class TensorNameMap:
"layers.{bid}.attention.wv", # llama-pth "layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert "encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j "transformer.h.{bid}.attn.v_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
), ),
# Attention output # Attention output
@ -128,12 +132,14 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.output.dense", # bert "encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j "transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
), ),
# Rotary embeddings # Rotary embeddings
MODEL_TENSOR.ATTN_ROT_EMBD: ( MODEL_TENSOR.ATTN_ROT_EMBD: (
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
"model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
), ),
# Feed-forward norm # Feed-forward norm
@ -167,6 +173,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.fc_in", # gpt-j "transformer.h.{bid}.mlp.fc_in", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen "transformer.h.{bid}.mlp.w1", # qwen
"model.layers.layers.{bid}.mlp.up_proj", # plamo
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
@ -179,6 +186,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth "layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen "transformer.h.{bid}.mlp.w2", # qwen
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
@ -198,6 +206,7 @@ class TensorNameMap:
"encoder.layer.{bid}.output.dense", # bert "encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j "transformer.h.{bid}.mlp.fc_out", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"model.layers.layers.{bid}.mlp.down_proj", # plamo
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (