mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
llama : add ability to cancel model loading (#4462)
* llama : Add ability to cancel model load Updated llama_progress_callback so that if it returns false, the model loading is aborted. * llama : Add test for model load cancellation * Fix bool return in llama_model_load, remove std::ignore use * Update llama.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Fail test if model file is missing * Revert "Fail test if model file is missing" This reverts commit 32ebd525bf7e5a87ee8a3dbaab3d92ce79fbf23d. * Add test-model-load-cancel to Makefile * Revert "Revert "Fail test if model file is missing"" This reverts commit 2796953257ee5383fa7c8fe8fa8fc888c048fb0b. * Simplify .gitignore for tests, clang-tidy fixes * Label all ctest tests * ci : ctest uses -L main * Attempt at writing ctest_with_model * ci : get ci/run.sh working with test-model-load-cancel * ci : restrict .github/workflows/build.yml ctest to -L main * update requirements.txt * Disable test-model-load-cancel in make * Remove venv before creation * Restructure requirements.txt Top-level now imports the specific additional requirements for each python file. Using `pip install -r requirements.txt` will fail if versions become mismatched in the per-file requirements. * Make per-python-script requirements work alone This doesn't break the main requirements.txt. * Add comment * Add convert-persimmon-to-gguf.py to new requirements.txt scheme * Add check-requirements.sh script and GitHub workflow * Remove shellcheck installation step from workflow * Add nocleanup special arg * Fix merge see: https://github.com/ggerganov/llama.cpp/pull/4462#discussion_r1434593573 * reset to upstream/master * Redo changes for cancelling model load --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
This commit is contained in:
parent
afefa319f1
commit
c7e9701f86
44
llama.cpp
44
llama.cpp
@ -2372,7 +2372,8 @@ struct llama_model_loader {
|
||||
}
|
||||
}
|
||||
|
||||
void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) const {
|
||||
// Returns false if cancelled by progress_callback
|
||||
bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) const {
|
||||
size_t size_data = 0;
|
||||
|
||||
for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
|
||||
@ -2404,7 +2405,9 @@ struct llama_model_loader {
|
||||
GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
|
||||
|
||||
if (progress_callback) {
|
||||
progress_callback((float) size_done / size_data, progress_callback_user_data);
|
||||
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const size_t offs = file_offset(ggml_get_name(cur));
|
||||
@ -2466,8 +2469,11 @@ struct llama_model_loader {
|
||||
}
|
||||
|
||||
if (progress_callback) {
|
||||
progress_callback(1.0f, progress_callback_user_data);
|
||||
// Even though the model is done loading, we still honor
|
||||
// cancellation since we need to free allocations.
|
||||
return progress_callback(1.0f, progress_callback_user_data);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
@ -3044,7 +3050,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
|
||||
}
|
||||
|
||||
static void llm_load_tensors(
|
||||
// Returns false if cancelled by progress_callback
|
||||
static bool llm_load_tensors(
|
||||
llama_model_loader & ml,
|
||||
llama_model & model,
|
||||
int n_gpu_layers,
|
||||
@ -3722,16 +3729,20 @@ static void llm_load_tensors(
|
||||
model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
|
||||
}
|
||||
|
||||
ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf_mmap, use_mlock ? &model.mlock_mmap : NULL);
|
||||
if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf_mmap, use_mlock ? &model.mlock_mmap : NULL)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
model.mapping = std::move(ml.mapping);
|
||||
|
||||
// loading time will be recalculate after the first eval, so
|
||||
// we take page faults deferred by mmap() into consideration
|
||||
model.t_load_us = ggml_time_us() - model.t_start_us;
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
|
||||
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
|
||||
static int llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
|
||||
try {
|
||||
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
|
||||
|
||||
@ -3749,19 +3760,21 @@ static bool llama_model_load(const std::string & fname, llama_model & model, con
|
||||
|
||||
if (params.vocab_only) {
|
||||
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
|
||||
return true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
llm_load_tensors(
|
||||
if (!llm_load_tensors(
|
||||
ml, model, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.use_mlock,
|
||||
params.progress_callback, params.progress_callback_user_data
|
||||
);
|
||||
)) {
|
||||
return -2;
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
|
||||
return false;
|
||||
return -1;
|
||||
}
|
||||
|
||||
return true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
//
|
||||
@ -9141,11 +9154,18 @@ struct llama_model * llama_load_model_from_file(
|
||||
LLAMA_LOG_INFO("\n");
|
||||
}
|
||||
}
|
||||
return true;
|
||||
};
|
||||
}
|
||||
|
||||
if (!llama_model_load(path_model, *model, params)) {
|
||||
int status = llama_model_load(path_model, *model, params);
|
||||
GGML_ASSERT(status <= 0);
|
||||
if (status < 0) {
|
||||
if (status == -1) {
|
||||
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
|
||||
} else if (status == -2) {
|
||||
LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
|
||||
}
|
||||
delete model;
|
||||
return nullptr;
|
||||
}
|
||||
|
6
llama.h
6
llama.h
@ -127,7 +127,7 @@ extern "C" {
|
||||
bool sorted;
|
||||
} llama_token_data_array;
|
||||
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
typedef bool (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
// Input data for llama_decode
|
||||
// A llama_batch object can contain input about one or many sequences
|
||||
@ -180,7 +180,9 @@ extern "C" {
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||
// If the provided progress_callback returns true, model loading continues.
|
||||
// If it returns false, model loading is immediately aborted.
|
||||
llama_progress_callback progress_callback;
|
||||
|
||||
// context pointer passed to the progress callback
|
||||
|
Loading…
x
Reference in New Issue
Block a user