gguf.py : fix vertical alignment

This commit is contained in:
Georgi Gerganov 2023-08-17 21:50:01 +03:00
parent 4dbce7d009
commit e426b3cfc8
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

220
gguf.py
View File

@ -11,55 +11,55 @@ from typing import Any, IO, List
# constants # constants
# #
GGUF_MAGIC = 0x47475546 GGUF_MAGIC = 0x47475546
GGUF_VERSION = 1 GGUF_VERSION = 1
GGUF_DEFAULT_ALIGNMENT = 32 GGUF_DEFAULT_ALIGNMENT = 32
# general # general
KEY_GENERAL_ARCHITECTURE = "general.architecture" KEY_GENERAL_ARCHITECTURE = "general.architecture"
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
KEY_GENERAL_ALIGNMENT = "general.alignment" KEY_GENERAL_ALIGNMENT = "general.alignment"
KEY_GENERAL_NAME = "general.name" KEY_GENERAL_NAME = "general.name"
KEY_GENERAL_AUTHOR = "general.author" KEY_GENERAL_AUTHOR = "general.author"
KEY_GENERAL_URL = "general.url" KEY_GENERAL_URL = "general.url"
KEY_GENERAL_DESCRIPTION = "general.description" KEY_GENERAL_DESCRIPTION = "general.description"
KEY_GENERAL_LICENSE = "general.license" KEY_GENERAL_LICENSE = "general.license"
KEY_GENERAL_SOURCE_URL = "general.source.url" KEY_GENERAL_SOURCE_URL = "general.source.url"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
# LLM # LLM
KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length" KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length"
KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length" KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length"
KEY_LLM_BLOCK_COUNT = "{arch}.block_count" KEY_LLM_BLOCK_COUNT = "{arch}.block_count"
KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
# attention # attention
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE # RoPE
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_SCALE = "{arch}.rope.scale" KEY_ROPE_SCALE = "{arch}.rope.scale"
# tokenization # tokenization
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type" KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
# #
# recommended mapping of model tensor names for storage in gguf # recommended mapping of model tensor names for storage in gguf
@ -96,41 +96,41 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH_NAMES = { MODEL_ARCH_NAMES = {
MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.GPT2: "gpt2", MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj", MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt", MODEL_ARCH.MPT: "mpt",
} }
MODEL_TENSOR_NAMES = { MODEL_TENSOR_NAMES = {
MODEL_ARCH.LLAMA: { MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs", MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
}, },
MODEL_ARCH.FALCON: { MODEL_ARCH.FALCON: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
}, },
MODEL_ARCH.GPT2: { MODEL_ARCH.GPT2: {
# TODO # TODO
@ -162,11 +162,11 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
# Token embeddings # Token embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
tensor_map["transformer.word_embeddings"] = mapped_to # falcon tensor_map["transformer.word_embeddings"] = mapped_to # falcon
tensor_map["model.embed_tokens"] = mapped_to # llama-hf tensor_map["model.embed_tokens"] = mapped_to # llama-hf
tensor_map["tok_embeddings"] = mapped_to # llama-pth tensor_map["tok_embeddings"] = mapped_to # llama-pth
# Position embeddings # Position embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
@ -177,17 +177,17 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
tensor_map["embed_out"] = mapped_to # gptneox tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth tensor_map["output"] = mapped_to # llama-pth
# Output norm # Output norm
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
tensor_map["transformer.norm_f"] = mapped_to # mpt tensor_map["transformer.norm_f"] = mapped_to # mpt
tensor_map["model.norm"] = mapped_to # llama-hf tensor_map["model.norm"] = mapped_to # llama-hf
tensor_map["norm"] = mapped_to # llama-pth tensor_map["norm"] = mapped_to # llama-pth
# Rope frequencies # Rope frequencies
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
@ -202,12 +202,12 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
mapped_to = mapped_to.format(bid=i) if mapped_to else None mapped_to = mapped_to.format(bid=i) if mapped_to else None
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
# Attention norm 2 # Attention norm 2
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
@ -219,9 +219,9 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
# Attention query # Attention query
@ -229,38 +229,38 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
# Attention key # Attention key
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
# Attention value # Attention value
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
# Attention output # Attention output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
# Rotary embeddings # Rotary embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
# Feed-forward norm # Feed-forward norm
@ -268,39 +268,39 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
# Feed-forward up # Feed-forward up
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
# Feed-forward gate # Feed-forward gate
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
# Feed-forward down # Feed-forward down
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None) mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
return tensor_map return tensor_map
@ -315,16 +315,16 @@ class GGMLQuantizationType(IntEnum):
class GGUFValueType(IntEnum): class GGUFValueType(IntEnum):
UINT8 = 0 UINT8 = 0
INT8 = 1 INT8 = 1
UINT16 = 2 UINT16 = 2
INT16 = 3 INT16 = 3
UINT32 = 4 UINT32 = 4
INT32 = 5 INT32 = 5
FLOAT32 = 6 FLOAT32 = 6
BOOL = 7 BOOL = 7
STRING = 8 STRING = 8
ARRAY = 9 ARRAY = 9
@staticmethod @staticmethod
def get_type(val): def get_type(val):