convert-llama-ggml-to-gguf: Try to handle files older than GGJTv3 (#3023)

* convert-llama-ggmlv3-to-gguf: Try to handle files older than GGJTv3

* Better error messages for files that cannot be converted

* Add file type to GGUF output

* Rename to convert-llama-ggml-to-gguf.py

* Include original file type information in description

* Improve some informational output
This commit is contained in:
Kerfuffle 2023-09-06 02:49:11 -06:00 committed by GitHub
parent 9912b9efc8
commit ea2c85d5d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -5,6 +5,7 @@ import argparse
import math import math
import struct import struct
import sys import sys
from enum import IntEnum
from pathlib import Path from pathlib import Path
import numpy as np import numpy as np
@ -34,10 +35,35 @@ GGML_QUANT_SIZES = {
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8), gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
} }
class GGMLFormat(IntEnum):
GGML = 0
GGMF = 1
GGJT = 2
class GGMLFType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1
MOSTLY_Q4_0 = 2
MOSTLY_Q4_1 = 3
MOSTLY_Q4_1_SOME_F16 = 4
MOSTLY_Q8_0 = 7
MOSTLY_Q5_0 = 8
MOSTLY_Q5_1 = 9
MOSTLY_Q2_K = 10
MOSTLY_Q3_K_S = 11
MOSTLY_Q3_K_M = 12
MOSTLY_Q3_K_L = 13
MOSTLY_Q4_K_S = 14
MOSTLY_Q4_K_M = 15
MOSTLY_Q5_K_S = 16
MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18
class Hyperparameters: class Hyperparameters:
def __init__(self): def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0 self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
self.n_ff = 0 self.n_layer = self.n_rot = self.n_ff = 0
self.ftype = GGMLFType.ALL_F32
def set_n_ff(self, model): def set_n_ff(self, model):
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight') ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
@ -53,16 +79,21 @@ class Hyperparameters:
self.n_head, self.n_head,
self.n_layer, self.n_layer,
self.n_rot, self.n_rot,
self.ftype, ftype,
) = struct.unpack('<7I', data[offset:offset + (4 * 7)]) ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
try:
self.ftype = GGMLFType(ftype)
except ValueError:
raise ValueError(f'Invalid ftype {ftype}')
return 4 * 7 return 4 * 7
def __str__(self): def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>' return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
class Vocab: class Vocab:
def __init__(self): def __init__(self, load_scores = True):
self.items = [] self.items = []
self.load_scores = load_scores
def load(self, data, offset, n_vocab): def load(self, data, offset, n_vocab):
orig_offset = offset orig_offset = offset
@ -70,20 +101,24 @@ class Vocab:
itemlen = struct.unpack('<I', data[offset:offset + 4])[0] itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
assert itemlen < 4096, 'Absurd vocab item length' assert itemlen < 4096, 'Absurd vocab item length'
offset += 4 offset += 4
vocab = bytes(data[offset:offset + itemlen]) item_text = bytes(data[offset:offset + itemlen])
offset += itemlen offset += itemlen
score = struct.unpack('<f', data[offset:offset + 4])[0] if self.load_scores:
item_score = struct.unpack('<f', data[offset:offset + 4])[0]
offset += 4 offset += 4
self.items.append((vocab, score)) else:
item_score = 0.0
self.items.append((item_text, item_score))
return offset - orig_offset return offset - orig_offset
class Tensor: class Tensor:
def __init__(self): def __init__(self, use_padding = True):
self.name = None self.name = None
self.dims: tuple[int, ...] = () self.dims: tuple[int, ...] = ()
self.dtype = None self.dtype = None
self.start_offset = 0 self.start_offset = 0
self.len_bytes = np.int64(0) self.len_bytes = np.int64(0)
self.use_padding = use_padding
def load(self, data, offset): def load(self, data, offset):
orig_offset = offset orig_offset = offset
@ -99,7 +134,7 @@ class Tensor:
offset += 4 * n_dims offset += 4 * n_dims
self.name = bytes(data[offset:offset + name_len]) self.name = bytes(data[offset:offset + name_len])
offset += name_len offset += name_len
pad = ((offset + 31) & ~31) - offset pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
offset += pad offset += pad
n_elems = np.prod(self.dims) n_elems = np.prod(self.dims)
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize) n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
@ -109,7 +144,7 @@ class Tensor:
# print(n_dims, name_len, dtype, self.dims, self.name, pad) # print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset return offset - orig_offset
class GGMLV3Model: class GGMLModel:
def __init__(self): def __init__(self):
self.hyperparameters = None self.hyperparameters = None
self.vocab = None self.vocab = None
@ -117,20 +152,52 @@ class GGMLV3Model:
self.tensors = [] self.tensors = []
def validate_header(self, data, offset): def validate_header(self, data, offset):
if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3: magic = bytes(data[offset:offset + 4])
raise ValueError('Only GGJTv3 supported') if magic == b'GGUF':
raise ValueError('File is already in GGUF format.')
if magic == b'lmgg':
self.file_format = GGMLFormat.GGML
self.format_version = 1
return 4
version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
if magic == b'fmgg':
if version != 1:
raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
self.file_format = GGMLFormat.GGMF
self.format_version = version
return 8 return 8
if magic == b'tjgg':
if version < 1 or version > 3:
raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
self.file_format = GGMLFormat.GGJT
self.format_version = version
return 8
raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
def validate_conversion(self, ftype):
err = ''
if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0:
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
def load(self, data, offset): def load(self, data, offset):
offset += self.validate_header(data, offset) offset += self.validate_header(data, offset)
hp = Hyperparameters() hp = Hyperparameters()
offset += hp.load(data, offset) offset += hp.load(data, offset)
vocab = Vocab() print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
self.validate_conversion(hp.ftype)
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
offset += vocab.load(data, offset, hp.n_vocab) offset += vocab.load(data, offset, hp.n_vocab)
tensors: list[Tensor] = [] tensors: list[Tensor] = []
tensor_map = {} tensor_map = {}
while offset < len(data): while offset < len(data):
tensor = Tensor() tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
offset += tensor.load(data, offset) offset += tensor.load(data, offset)
tensor_map[tensor.name] = len(tensors) tensor_map[tensor.name] = len(tensors)
tensors.append(tensor) tensors.append(tensor)
@ -168,7 +235,10 @@ class GGMLToGGUF:
def save(self): def save(self):
print('* Preparing to save GGUF file') print('* Preparing to save GGUF file')
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False) gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
use_temp_file = False )
self.add_params(gguf_writer) self.add_params(gguf_writer)
self.add_vocab(gguf_writer) self.add_vocab(gguf_writer)
if self.special_vocab is not None: if self.special_vocab is not None:
@ -185,7 +255,10 @@ class GGMLToGGUF:
def add_params(self, gguf_writer): def add_params(self, gguf_writer):
hp = self.model.hyperparameters hp = self.model.hyperparameters
cfg = self.cfg cfg = self.cfg
desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format' if cfg.desc is not None:
desc = cfg.desc
else:
desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
try: try:
# Filenames aren't necessarily valid UTF8. # Filenames aren't necessarily valid UTF8.
name = cfg.name if cfg.name is not None else cfg.input.name name = cfg.name if cfg.name is not None else cfg.input.name
@ -195,6 +268,7 @@ class GGMLToGGUF:
if name is not None: if name is not None:
gguf_writer.add_name(name) gguf_writer.add_name(name)
gguf_writer.add_description(desc) gguf_writer.add_description(desc)
gguf_writer.add_file_type(int(hp.ftype))
if self.params_override is not None: if self.params_override is not None:
po = self.params_override po = self.params_override
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch' assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
@ -231,7 +305,8 @@ class GGMLToGGUF:
tokens.append(vbytes) tokens.append(vbytes)
scores.append(score) scores.append(score)
toktypes.append(ttype) toktypes.append(ttype)
assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}' assert len(tokens) == hp.n_vocab, \
f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores) gguf_writer.add_token_scores(scores)
if len(toktypes) > 0: if len(toktypes) > 0:
@ -283,7 +358,11 @@ class GGMLToGGUF:
tempdims[1] = tempdims[0] tempdims[1] = tempdims[0]
tempdims[0] = temp tempdims[0] = temp
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}') # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype) gguf_writer.add_tensor(
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims,
raw_dtype = tensor.dtype )
def handle_metadata(cfg, hp): def handle_metadata(cfg, hp):
import convert import convert
@ -305,32 +384,46 @@ def handle_metadata(cfg, hp):
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path) params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
else: else:
raise ValueError('Unable to load metadata') raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype) vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype )
# FIXME: Respect cfg.vocab_dir? # FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir) svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
convert.check_vocab_size(params, vocab) convert.check_vocab_size(params, vocab)
return (params, vocab, svocab) return (params, vocab, svocab)
def handle_args(): def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF') parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True, help = 'Input GGMLv3 filename') parser.add_argument('--input', '-i', type = Path, required = True,
parser.add_argument('--output', '-o', type = Path, required = True, help ='Output GGUF filename') help = 'Input GGMLv3 filename')
parser.add_argument('--name', help = 'Set model name') parser.add_argument('--output', '-o', type = Path, required = True,
parser.add_argument('--desc', help = 'Set model description') help ='Output GGUF filename')
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') parser.add_argument('--name',
parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2') help = 'Set model name')
parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096') parser.add_argument('--desc',
parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory') help = 'Set model description')
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") parser.add_argument('--gqa', type = int, default = 1,
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm") help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06',
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048,
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path,
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args() return parser.parse_args()
def main(): def main():
cfg = handle_args() cfg = handle_args()
print(f'* Using config: {cfg}') print(f'* Using config: {cfg}')
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n') print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
data = np.memmap(cfg.input, mode = 'r') data = np.memmap(cfg.input, mode = 'r')
model = GGMLV3Model() model = GGMLModel()
print('* Scanning GGML input file') print('* Scanning GGML input file')
offset = model.load(data, 0) offset = model.load(data, 0)
print(f'* GGML model hyperparameters: {model.hyperparameters}') print(f'* GGML model hyperparameters: {model.hyperparameters}')
@ -345,7 +438,12 @@ def main():
print(f'* Special vocab: {special_vocab}') print(f'* Special vocab: {special_vocab}')
else: else:
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab) if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(model, data, cfg,
params_override = params_override,
vocab_override = vocab_override,
special_vocab = special_vocab )
converter.save() converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}') print(f'* Successful completion. Output saved to: {cfg.output}')