ggml : group mul_mat_id rows by matrix (cpu only) (#4480)

* ggml : group mul_mat_id rows by matrix (cpu only)

* remove mmid parameters from mm forward

* store row groups in wdata and calculate only once in GGML_TASK_INIT

ggml-ci
This commit is contained in:
slaren 2023-12-15 12:45:50 +01:00 committed by GitHub
parent 6744dbe924
commit ee4725a686
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

237
ggml.c
View File

@ -9580,16 +9580,11 @@ static bool ggml_compute_forward_mul_mat_use_blas(
} }
#endif #endif
// off1 = offset in i11 and i1
// cne1 = ne11 and ne1
// in a normal matrix multiplication, off1 = 0 and cne1 = ne1
// during GGML_TASK_INIT, the full src1 is converted regardless of off1 and cne1
static void ggml_compute_forward_mul_mat( static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst, struct ggml_tensor * dst) {
int64_t off1, int64_t cne1) {
int64_t t0 = ggml_perf_time_us(); int64_t t0 = ggml_perf_time_us();
UNUSED(t0); UNUSED(t0);
@ -9657,9 +9652,9 @@ static void ggml_compute_forward_mul_mat(
const int64_t i03 = i13/r3; const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2; const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03; const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + off1*nb11 + i12*nb12 + i13*nb13); const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + off1*nb1 + i12*nb2 + i13*nb3); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) { if (type != GGML_TYPE_F32) {
float * const wdata = params->wdata; float * const wdata = params->wdata;
@ -9676,7 +9671,7 @@ static void ggml_compute_forward_mul_mat(
} }
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
cne1, ne01, ne10, ne1, ne01, ne10,
1.0f, y, ne10, 1.0f, y, ne10,
x, ne00, x, ne00,
0.0f, d, ne01); 0.0f, d, ne01);
@ -9717,8 +9712,8 @@ static void ggml_compute_forward_mul_mat(
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10); const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1*ne12*ne13; // src1 rows const int64_t nr1 = ne1*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1); //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
@ -9760,9 +9755,9 @@ static void ggml_compute_forward_mul_mat(
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) { for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) { for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) { for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*cne1)); const int64_t i13 = (ir1/(ne12*ne1));
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1; const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
const int64_t i11 = (ir1 - i13*ne12*cne1 - i12*cne1) + off1; const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
// broadcast src0 into src1 // broadcast src0 into src1
const int64_t i03 = i13/r3; const int64_t i03 = i13/r3;
@ -9802,28 +9797,191 @@ static void ggml_compute_forward_mul_mat(
static void ggml_compute_forward_mul_mat_id( static void ggml_compute_forward_mul_mat_id(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * ids,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
// during GGML_TASK_INIT the entire src1 is converted to vec_dot_type
ggml_compute_forward_mul_mat(params, dst->src[2], src1, dst, 0, dst->ne[1]);
return;
}
const struct ggml_tensor * ids = src0; GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
// row groups
const int id = ggml_get_op_params_i32(dst, 0); const int id = ggml_get_op_params_i32(dst, 0);
const int n_as = ggml_get_op_params_i32(dst, 1); const int n_as = ggml_get_op_params_i32(dst, 1);
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { char * wdata_src1_end = (src1->type == vec_dot_type) ?
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]); (char *) params->wdata :
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
GGML_ASSERT(row_id >= 0 && row_id < n_as); int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
const struct ggml_tensor * src0_row = dst->src[row_id + 2]; #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);
if (params->type == GGML_TASK_INIT) {
char * wdata = params->wdata;
if (src1->type != vec_dot_type) {
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
// initialize matrix_row_counts
GGML_ASSERT(wdata == wdata_src1_end);
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
// group rows by src0 matrix
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
matrix_row_counts[row_id] += 1;
}
return;
} }
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// compute each matrix multiplication in sequence
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
const int64_t cne1 = matrix_row_counts[cur_a];
if (cne1 == 0) {
continue;
}
const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
// threads with no work simply yield (not sure if it helps)
if (ir010 >= ir011 || ir110 >= ir111) {
sched_yield();
continue;
}
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
#undef MMID_MATRIX_ROW
} }
// ggml_compute_forward_out_prod // ggml_compute_forward_out_prod
@ -14191,7 +14349,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break; } break;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
{ {
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor, 0, tensor->ne[1]); ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
@ -15991,7 +16149,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
// FIXME: blas
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_OUT_PROD: case GGML_OP_OUT_PROD:
@ -16325,20 +16482,16 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
const struct ggml_tensor * a = node->src[2]; const struct ggml_tensor * src0 = node->src[2];
const struct ggml_tensor * b = node->src[1]; const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type; const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (src1->type != vec_dot_type) {
if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) { cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
if (a->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
}
} else
#endif
if (b->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(b));
} }
const int n_as = ggml_get_op_params_i32(node, 1);
cur = GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
} break; } break;
case GGML_OP_OUT_PROD: case GGML_OP_OUT_PROD:
{ {