* llama : add enum for supported chat templates
* use "built-in" instead of "supported"
* arg: print list of built-in templates
* fix test
* update server README
* llama : accept a list of devices to use to offload a model
* accept `--dev none` to completely disable offloading
* fix dev list with dl backends
* rename env parameter to LLAMA_ARG_DEVICE for consistency
* llama: propagating the results of `graph_compute` to the user interface
* llama: reverting kv_cache in case of failed compute
* llama: `llama_kv_cache_state` was removed, only the result of `llama_graph_compute` is returned
* llama: restore a kv_cache in case of failed computation
* llama: correct reverting of the entire batch.
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models
* llama: updated comments
* llama : add comments about KV cache state after error
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : deprecate softmax sampler + fix dist sampler
ggml-ci
* tests : replace macros with functions
ggml-ci
* sampling : change temperature sampler logic
For t <= 0.0f, keep the max logit intact and set the rest to -inf
* cont : no need for special "greedy" logic
top-k == 1 is the same
* tests : init prob correctly
* llama : handle temp <= 0.0 in the temp_ext sampler too
ggml-ci
* cont : avoid extra loop in temperature sampler for sub-zero temp
ggml-ci
* Initial XTC commit
Adds XTC sampler, not activated by default, but recommended settings by default.
* Cleanup
* Simplified chances calculation
To be more inline with the original implementation, chance is calculated once at the beginning.
* First fixes by comments
Still need to look into sorting
* Fixed trailing backspaces
* Fixed RNG to be reproduceable
Thanks to @slaren for directions
* Fixed forgotten header
* Moved `min_keep`
Moved from conditions to a simple check at the end.
* Fixed broken randomization
Thanks to @slaren for explanation
* Swapped sorting for a custom algorithm
Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.
* Algorithm rework
1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.
* Added XTC to `test-sampling`
* Simplified algorithm and more tests
* Updated info in common and args
* Merged back lost commits in common and arg
* Update dump info in common
* Fixed incorrect min_keep check
* Added XTC to README
* Renamed parameters, fixed info and defaults
* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off
* Initial server support
* Added XTC to server UIs
* Fixed labels in old server UI
* Made algorithm safer and more readable
* Removed xtc_threshold_max
* Fixed arg after update
* Quick fixes by comments
* Simplified algorithm since threshold_max is removed
* Renamed random distribution
* Fixed tests and outdated README
* Small fixes
* llama : improve infill support
ggml-ci
* llama : add more FIM token strings
ggml-ci
* server : update prompt on slot restore (#9800)
* gguf : deprecate old FIM token KVs
* llama : llama_perf + option to disable timings during decode
ggml-ci
* common : add llama_arg
* Update src/llama.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* perf : separate functions in the API
ggml-ci
* perf : safer pointer handling + naming update
ggml-ci
* minor : better local var name
* perf : abort on invalid sampler pointer
ggml-ci
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b
* ggml-quants : faster 1.625 bpw AVX2 vec_dot
Not using a lookup table anymore makes it match q4_0 speed.
* gguf-py : fix formatting
* llama : remove spaces on empty line
* ggml-quants : subtract 1 when back in epi8
This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.
* ggml-quants : Q2_2 now faster than Q4_K on with AVX2
* ggml-quants : cleanup Q1_3 code formatting
* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3
* ggml-quants : use ceiling division when quantizing q1_3
* convert-hf : simplify BitNet pre-quantization
This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.
* convert-hf : allow converting the weird BitNet 1.3B
Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.
* bitnet : replace 1.58b with b1.58, as in the paper
* ggml-quants : fix build failure on Windows
* ggml-quants : attempt to fix Arm 32-bit support
* ggml : add some informative comments in q1_3 vec_dot
* ggml : add TQ1_0 and TQ2_0 ternary quantization types
* ggml : even faster TQ2_0
* ggml : also faster TQ1_0
Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.
* ggml : fix build issues in certain environments
* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0
* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat
The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.
* ggml : remove q1_3 and q2_2
No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.
* llama : remove the separate scale tensors of BitNet b1.58
They won't be needed, since the remaining ternary quant types have
built-in scales.
* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency
* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot
Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.
* ggml-quants : remove comment about possible format change of TQ2_0
Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.
* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0
* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0
This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.
* convert : allow direct conversion to TQ1_0 and TQ2_0
The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.
* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0
Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.
* ggml-quants : allow using ARM dot product instructions for TQ1_0
* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support
* ggml : remove unused ggml_mul special case
It would otherwise conflict with the more general
optimization coming with Mamba-2.
* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators
* test-backend-ops : add TQ1_0 and TQ2_0 comments for later
Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
* Introduce ggml_compute_threadpool
- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems
* Minor fixes
* fixed use after release bug
* fixed a harmless race condition
* Fix Android bulid issue
* fix more race conditions
* fix deadlock for cases where cgraph.n_nodes == 1
and fix --poll case
* threadpool: use cpu_get_num_math to set the default number of threadpool threads
This way we avoid using E-Cores and Hyperthreaded siblings.
* bench: create fresh threadpool for each test
For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).
* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier
This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.
* threadpool: make polling the default to match openmp behavior
All command line args now allow for setting poll to 0 (false).
* threadpool: do not wakeup threads in already paused threadpool
* fix potential race condition in check_for_work
* threadpool: do not create two threadpools if their params are identical
* threadpool: reduce pause/resume/wakeup overhead in common cases
We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.
* threadpool: add support for hybrid polling
poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...
The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.
* threadpool: reduce the number of barrier required
New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.
* threadpool: remove special-casing for disposable threadpools
With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.
Include n_threads in debug print for disposable threadpool.
Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.
* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)
This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.
* threadpool: use relaxed order for chunk sync
Full memory barrier is an overkill for this since each thread works on different chunk
* threadpool: remove abort_callback from threadpool state
* threadpool: better naming for thread/cpumask releated functions
* threadpool: consistent use of int type for n_threads params
* threadpool: add support for ggml_threadpool_params_default/init
Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.
* threadpool: move typedef into ggml.h
* threadpool: fix apply_priority() function name
* threadpool: fix swift wrapper errors due to n_threads int type cleanup
* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled
* threadpool: replace checks for compute_thread ret code with proper status check
* threadpool: simplify threadpool init logic and fix main thread affinity application
Most of the init code is now exactly the same between threadpool and openmp.
* threadpool: update threadpool resume/pause function names
* threadpool: enable openmp by default for now
* threadpool: don't forget to free workers state when omp is enabled
* threadpool: avoid updating process priority on the platforms that do not require it
On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.
* threadpool: update calling thread prio and affinity only at start/resume
This avoids extra syscalls for each graph_compute()
* llama-bench: turn threadpool params into vectors, add output headers, etc
* llama-bench: add support for cool off between tests --delay
This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.
* threadpool: move process priority setting into the apps (bench and cli)
This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.
* threadpool: move all pause/resume logic into ggml
* threadpool: futher api cleanup and prep for future refactoring
All threadpool related functions and structs use ggml_threadpool prefix.
* threadpool: minor indent fixes
* threadpool: improve setprioty error message
* Update examples/llama-bench/llama-bench.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* threadpool: fix indent in set_threadpool call
* use int32_t for n_thread type in public llama.cpp API
* threadpool: use _new and _free instead of _create and _release
* fix two more public APIs to use int32_t for n_threads
* build: set _GNU_SOURCE for Adroid
---------
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* llama : advanced batch splits
This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.
* llama : always make recurrent state slots contiguous
* ggml : simplify mamba operators
* llama : fix integer signedness mixing
* llama : logits_all has priority over batch->logits
Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.
* llama : apply suggestions
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix t5 segfault
* llama : fix Mamba session save and restore
* llama : minor cosmetic changes
* llama : rename llama_reorder_outputs to llama_output_reorder
Also move it closer to llama_output_reserve.
* llama : fix pooled embeddings when using batches with equal_seqs
* minor : add struct members for clarity
ggml-ci
* llama : fix T5 segfault again
* llama : fix Mamba pooled embeddings with multiple sequences
Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.
* llama : add llama_model_is_recurrent to simplify figuring that out
This will make it easier to more cleanly support RWKV-v6 and Mamba-2.
* llama : fix simple splits when the batch contains embeddings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : move rope type enum to ggml.h
This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.
The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.
Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.
* squash! ggml : move rope type enum to ggml.h
This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.
I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.
* squash! ggml : move rope type enum to ggml.h
This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.
* squash! ggml : move rope type enum to ggml.h
This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.
* squash! ggml : move rope type enum to ggml.h
This commit fixes the editorconfig-checker warnings.
* squash! ggml : move rope type enum to ggml.h
Update comment for ggml_rope function.
* Revert "squash! ggml : move rope type enum to ggml.h"
This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6.
* squash! ggml : move rope type enum to ggml.h
Add GGML_ROPE_TYPE_NEOX to rope_common.comp.
* remove extra line
---------
Co-authored-by: slaren <slarengh@gmail.com>
* gguf-py : add T5ENCODER model architecture
* common : call llama_decode() during warmup only if the model has decoder
* convert-hf : add T5EncoderModel
* llama : add llama_model_has_decoder() API function
* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()
* llama : add support for LLM_ARCH_T5ENCODER
* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE
* llama-embedding : add support for encoder-only models
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* llama : refactor session file management
* llama : saving and restoring state checks for overflow
The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.
* llama : stream from session file instead of copying into a big buffer
Loading session files should no longer cause a memory usage spike.
* llama : llama_state_get_size returns the actual size instead of max
This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.
* llama : share code between whole and seq_id-specific state saving
Both session file types now use a more similar format.
* llama : no longer store all hparams in session files
Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.
* llama : fix uint64_t format type
* llama : various integer type cast and format string fixes
Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.
* llama : remove _context suffix for llama_data_context
* llama : fix session file loading
llama_state_get_size cannot be used to get the max size anymore.
* llama : more graceful error handling of invalid session files
* llama : remove LLAMA_MAX_RNG_STATE
It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.
* llama : cast seq_id in comparison with unsigned n_seq_max
* lora: load to devide buft
* add patch tensor function
* correct tensor patch
* llama_lora_adapter_apply
* correct ggml_backend_tensor_copy
* add llm_build_mm
* fix auto merge
* update based on review comments
* add convert script
* no more transpose A
* add f16 convert
* add metadata check
* add sanity check
* fix ftype
* add requirements
* fix requirements
* fix outfile
* conversion: only allow selected models
* fix types
* cuda : do not use dmmv if the tensor does not have enough cols
* llama : lora fixes
* do not disable mmap with lora
Co-authored-by: slaren <slarengh@gmail.com>
* llm_build_lora_mm_id
* convert_lora : MoE LoRA conversion support
* convert_lora : prefer safetensors, similarly to convert_hf
* convert_hf : simplify modify_tensors for InternLM2
* convert_lora : lazy conversion
* llama : load and use alpha from LoRA adapters
* llama : use llm_build_lora_mm in most model graphs
* auto scale
* Revert "auto scale"
This reverts commit 42415a4874e0f963e4aca6796ea5dfb97cd17464.
* remove redundant params
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* change kv metadata
* move add_type to __init__
* convert_hf : move add_type to main()
* convert_lora : use the GGUFWriter from Model instead of overwriting it
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files
* Arm AArch64: minor code refactoring for rebase
* Arm AArch64: minor code refactoring for resolving a build issue with cmake
* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code change for resolving a build issue with server-windows
* retrigger checks
* Arm AArch64: minor code changes for rebase
* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits
* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig
* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code refactoring
* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat
* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat
* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure
* Arm AArch64: remove a redundant comment
* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off
* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels
* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
* add chatglm3-6b model support huggingface model:
https://hf-mirror.com/THUDM/chatglm3-6b
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix lint error
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* optimize convert-hf-to-gguf.py for chatglm model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* support glm-4-9b-chat
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix eos tokens to glm4
* remove unused log
* add preprocess to chatglm3 and chatglm4
* add eos_id_list to llama.cpp
* fix code style
* fix code style
* fix conflicts
* fix conflicts
* Revert "add eos_id_list to llama.cpp"
This reverts commit 3a4d5790bfdc205c5b658204239f168fc21cc1a8.
* set <|endoftext|> as eos and <|user|> as eot
* fix chat template bug
* add comment to glm prefix and suffix
* fix conflicts and add rope_ratio & ChatGLMForConditionalGeneration
* fix chat template bug
* fix codestyle
* fix conflicts
* modified the general name of glm model
* fix conflicts
* remove prefix and suffix
* use normal glm4 chattempalte & use LLM_FFN_SWIGLU in phi3
* fix: resolve Flake8 errors in `convert-hf-to-gguf.py`
- Fix E302 by adding two blank lines before top-level function definitions
- Replace print statements to fix NP100
- Fix E303 by ensuring only one blank line between lines of code
* fix rope ratio to solve incorrect answers
* fix by comments
---------
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: Umpire2018 <138990495+Umpire2018@users.noreply.github.com>
* Add llama_detokenize():
- Update header files location
- UNKNOWN and CONTROL are 'special pieces'
- Remove space after UNKNOWN and CONTROL
- Refactor llama_token_to_piece()
- Add flag: clean_up_tokenization_spaces
- Symmetric params for llama_tokenize() and llama_detokenize()
* Update and fix tokenizer tests:
- Using llama_detokenize()
- Unexpected vocab type as test fail instead of error
- Useful when automating tests:
- If you don't know in advance the vocab type
- Differenciate other loading errors
- Skip unicode surrogaes and undefined
- Gracefully exit threads
- Using exit() is throwing random exceptions
- Clean old known problematic codepoints
- Minor: confusing hexadecimal codepoint
* Update bruteforce random tests
- Add detokenizer checks
- New generator: ascii_lr_strip
- New generator: apostrophe
- Add more vocabs files
- Detokenize special tokens.
- Replace errors with '\uFFFD' when detokenizing to 'utf-8'
- More edge cases
- Better detokenization results check
* Fix add_space_prefix, set false by default
* Better leading space removal
* Do not remove space when decoding special tokens
* Bugfix: custom regexs splits undefined unicode codepoints
* 'viking' detokenizer clean spaces