Commit Graph

193 Commits

Author SHA1 Message Date
Andrei
76164fe2e6
cmake : fix llama.h location when built outside of root directory (#3179) 2023-09-15 11:07:40 +03:00
Andrei
769266a543
cmake : compile ggml-rocm with -fpic when building shared library (#3158) 2023-09-14 20:38:16 +03:00
bandoti
990a5e226a
cmake : add relocatable Llama package (#2960)
* Keep static libs and headers with install

* Add logic to generate Config package

* Use proper build info

* Add llama as import library

* Prefix target with package name

* Add example project using CMake package

* Update README

* Update README

* Remove trailing whitespace
2023-09-14 20:04:40 +03:00
Tristan Ross
1b6c650d16
cmake : add a compiler flag check for FP16 format (#3086) 2023-09-13 16:08:52 +03:00
Johannes Gäßler
0a5eebb45d
CUDA: mul_mat_q RDNA2 tunings (#2910)
* CUDA: mul_mat_q RDNA2 tunings

* Update ggml-cuda.cu

Co-authored-by: Henri Vasserman <henv@hot.ee>

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
2023-09-13 11:20:24 +02:00
Eric Sommerlade
b52b29ab9d
arm64 support for windows (#3007)
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-09-12 21:54:20 -04:00
Jhen-Jie Hong
1b0d09259e
cmake : support build for iOS/tvOS (#3116)
* cmake : support build for iOS/tvOS

* ci : add iOS/tvOS build into macOS-latest-cmake

* ci : split ios/tvos jobs
2023-09-11 19:49:06 +08:00
Georgi Gerganov
b3e9852e47
sync : ggml (CUDA GLM RoPE + POSIX) (#3082)
ggml-ci
2023-09-08 17:58:07 +03:00
Przemysław Pawełczyk
cb6c44c5e0
build : do not use _GNU_SOURCE gratuitously (#2035)
* Do not use _GNU_SOURCE gratuitously.

What is needed to build llama.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions,
plus some stuff from BSD that is not specified in POSIX.1.

Well, that was true until NUMA support was added recently,
so enable GNU libc extensions for Linux builds to cover that.

Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
FTMs set by Makefile here or other FTMs depending on their needs.

It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.

* make : enable Darwin extensions for macOS to expose RLIMIT_MEMLOCK

* make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK

* make : use BSD-specific FTMs to enable alloca on BSDs

* make : fix OpenBSD build by exposing newer POSIX definitions

* cmake : follow recent FTM improvements from Makefile
2023-09-08 15:09:21 +03:00
Kunshang Ji
7f412dab9c
enable CPU HBM (#2603)
* add cpu hbm support

* add memalign 0 byte check

* Update ggml.c

* Update llama.cpp

* ggml : allow ggml_init with 0 size

* retrigger ci

* fix code style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-08 03:46:56 +02:00
Cebtenzzre
00d62adb79
fix some warnings from gcc and clang-tidy (#3038)
Co-authored-by: xaedes <xaedes@gmail.com>
2023-09-07 13:22:29 -04:00
Cebtenzzre
9912b9efc8
build : add LLAMA_METAL_NDEBUG flag (#3033) 2023-09-05 18:21:10 -04:00
Georgi Gerganov
e36ecdccc8
build : on Mac OS enable Metal by default (#2901)
* build : on Mac OS enable Metal by default

* make : try to fix build on Linux

* make : move targets back to the top

* make : fix target clean

* llama : enable GPU inference by default with Metal

* llama : fix vocab_only logic when GPU is enabled

* common : better `n_gpu_layers` assignment

* readme : update Metal instructions

* make : fix merge conflict remnants

* gitignore : metal
2023-09-04 22:26:24 +03:00
Cebtenzzre
ef15649972
build : fix most gcc and clang warnings (#2861)
* fix most gcc and clang warnings

* baby-llama : remove commented opt_params_adam

* fix some MinGW warnings

* fix more MinGW warnings
2023-09-01 16:34:50 +03:00
Cebtenzzre
849408957c
tests : add a C compliance test (#2848)
* tests : add a C compliance test

* make : build C compliance test by default

* make : fix clean and make sure C test fails on clang

* make : move -Werror=implicit-int to CFLAGS
2023-08-30 09:20:26 +03:00
Georgi Gerganov
3a007648f2
metal : add option to disable debug logs (close #2764) 2023-08-29 11:33:46 +03:00
Henri Vasserman
6bbc598a63
ROCm Port (#1087)
* use hipblas based on cublas
* Update Makefile for the Cuda kernels
* Expand arch list and make it overrideable
* Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5)
* add hipBLAS to README
* new build arg LLAMA_CUDA_MMQ_Y
* fix half2 decomposition
* Add intrinsics polyfills for AMD
* AMD assembly optimized __dp4a
* Allow overriding CC_TURING
* use "ROCm" instead of "CUDA"
* ignore all build dirs
* Add Dockerfiles
* fix llama-bench
* fix -nommq help for non CUDA/HIP

---------

Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com>
Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com>
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Co-authored-by: jammm <2500920+jammm@users.noreply.github.com>
Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
2023-08-25 12:09:42 +03:00
Georgi Gerganov
6381d4e110
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass

* gguf : read header + meta data

* gguf : read tensor info

* gguf : initial model loading - not tested

* gguf : add gguf_get_tensor_name()

* gguf : do not support passing existing ggml_context to gguf_init

* gguf : simplify gguf_get_val

* gguf : gguf.c is now part of ggml.c

* gguf : read / write sample models

* gguf : add comments

* refactor : reduce code duplication and better API (#2415)

* gguf : expose the gguf_type enum through the API for now

* gguf : add array support

* gguf.py : some code style changes

* convert.py : start a new simplified implementation by removing old stuff

* convert.py : remove GGML vocab + other obsolete stuff

* GGUF : write tensor (#2426)

* WIP: Write tensor

* GGUF : Support writing tensors in Python

* refactor : rm unused import and upd todos

* fix : fix errors upd writing example

* rm example.gguf

* gitignore *.gguf

* undo formatting

* gguf : add gguf_find_key (#2438)

* gguf.cpp : find key example

* ggml.h : add gguf_find_key

* ggml.c : add gguf_find_key

* gguf : fix writing tensors

* gguf : do not hardcode tensor names to read

* gguf : write sample tensors to read

* gguf : add tokenization constants

* quick and dirty conversion example

* gguf : fix writing gguf arrays

* gguf : write tensors one by one and code reuse

* gguf : fix writing gguf arrays

* gguf : write tensors one by one

* gguf : write tensors one by one

* gguf : write tokenizer data

* gguf : upd gguf conversion script

* Update convert-llama-h5-to-gguf.py

* gguf : handle already encoded string

* ggml.h : get array str and f32

* ggml.c : get arr str and f32

* gguf.py : support any type

* Update convert-llama-h5-to-gguf.py

* gguf : fix set is not subscriptable

* gguf : update convert-llama-h5-to-gguf.py

* constants.py : add layer norm eps

* gguf.py : add layer norm eps and merges

* ggml.h : increase GGML_MAX_NAME to 64

* ggml.c : add gguf_get_arr_n

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Makefile : add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* gguf : support custom alignment value

* gguf : fix typo in function call

* gguf : mmap tensor data example

* fix : update convert-llama-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* convert-gptneox-h5-to-gguf.py : Special tokens

* gptneox-main.cpp : special tokens

* Update gptneox-main.cpp

* constants.py : special tokens

* gguf.py : accumulate kv and tensor info data + special tokens

* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens

* gguf : gguf counterpart of llama-util.h

* gguf-util.h : update note

* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens

* convert-llama-h5-to-gguf.py : special tokens

* Delete gptneox-common.cpp

* Delete gptneox-common.h

* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer

* gptneox-main.cpp : gpt2 bpe tokenizer

* gpt2 bpe tokenizer (handles merges and unicode)

* Makefile : remove gptneox-common

* gguf.py : bytesarray for gpt2bpe tokenizer

* cmpnct_gpt2bpe.hpp : comments

* gguf.py : use custom alignment if present

* gguf : minor stuff

* Update gptneox-main.cpp

* map tensor names

* convert-gptneox-h5-to-gguf.py : map tensor names

* convert-llama-h5-to-gguf.py : map tensor names

* gptneox-main.cpp : map tensor names

* gguf : start implementing libllama in GGUF (WIP)

* gguf : start implementing libllama in GGUF (WIP)

* rm binary commited by mistake

* upd .gitignore

* gguf : calculate n_mult

* gguf :  inference with 7B model working (WIP)

* gguf : rm deprecated function

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : add gguf_get_kv_type

* gguf : add gguf_get_kv_type

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver

* gguf : rm references to old file formats

* gguf : shorter name for member variable

* gguf : rm redundant method

* gguf : get rid of n_mult, read n_ff from file

* Update gguf_tensor_map.py

* Update gptneox-main.cpp

* gguf : rm references to old file magics

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : quantization is working

* gguf : roper closing of file

* gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice

* convert-llama-h5-to-gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : simplify nbytes

* convert-llama-h5-to-gguf.py : simplify nbytes

* gptneox-main.cpp : n_layer --> n_block

* constants.py : n_layer --> n_block

* gguf.py : n_layer --> n_block

* convert-gptneox-h5-to-gguf.py : n_layer --> n_block

* convert-llama-h5-to-gguf.py : n_layer --> n_block

* gptneox-main.cpp : n_layer --> n_block

* Update gguf_tensor_map.py

* convert-gptneox-h5-to-gguf.py : load model in parts to save memory

* convert-llama-h5-to-gguf.py : load model in parts to save memory

* convert : write more metadata for LLaMA

* convert : rm quantization version

* convert-gptneox-h5-to-gguf.py : add file_type key

* gptneox-main.cpp : add file_type key

* fix conflicts

* gguf : add todos and comments

* convert-gptneox-h5-to-gguf.py : tensor name map changes

* Create gguf_namemap.py : tensor name map changes

* Delete gguf_tensor_map.py

* gptneox-main.cpp : tensor name map changes

* convert-llama-h5-to-gguf.py : fixes

* gguf.py : dont add empty strings

* simple : minor style changes

* gguf : use UNIX line ending

* Create convert-llama-7b-pth-to-gguf.py

* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)

* llama : sync gguf-llama.cpp with latest llama.cpp

* minor : indentation + assert

* llama : refactor gguf_buffer and gguf_ctx_buffer

* llama : minor

* gitignore : add gptneox-main

* llama : tokenizer fixes (#2549)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* convert : update convert-new.py with tokenizer fixes (#2614)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* llama : sync gguf-llama with llama (#2613)

* llama : sync gguf-llama with llama

* tests : fix build + warnings (test-tokenizer-1 still fails)

* tests : fix wstring_convert

* convert : fix layer names

* llama : sync gguf-llama.cpp

* convert : update HF converter to new tokenizer voodoo magics

* llama : update tokenizer style

* convert-llama-h5-to-gguf.py : add token types

* constants.py : add token types

* gguf.py : add token types

* convert-llama-7b-pth-to-gguf.py : add token types

* gguf-llama.cpp :  fix n_head_kv

* convert-llama-h5-to-gguf.py : add 70b gqa support

* gguf.py : add tensor data layout

* convert-llama-h5-to-gguf.py : add tensor data layout

* convert-llama-7b-pth-to-gguf.py : add tensor data layout

* gptneox-main.cpp : add tensor data layout

* convert-llama-h5-to-gguf.py : clarify the reverse permute

* llama : refactor model loading code (#2620)

* llama : style formatting + remove helper methods

* llama : fix quantization using gguf tool

* llama : simplify gguf_file_saver

* llama : fix method names

* llama : simplify write_header()

* llama : no need to pass full file loader to the file saver

just gguf_ctx

* llama : gguf_file_saver write I32

* llama : refactor tensor names (#2622)

* gguf: update tensor names searched in quantization

* gguf : define tensor names as constants

* gguf : initial write API (not tested yet)

* gguf : write to file API (not tested)

* gguf : initial write API ready + example

* gguf : fix header write

* gguf : fixes + simplify example + add ggml_nbytes_pad()

* gguf : minor

* llama : replace gguf_file_saver with new gguf write API

* gguf : streaming support when writing files

* gguf : remove oboslete write methods

* gguf : remove obosolete gguf_get_arr_xxx API

* llama : simplify gguf_file_loader

* llama : move hparams and vocab from gguf_file_loader to llama_model_loader

* llama : merge gguf-util.h in llama.cpp

* llama : reorder definitions in .cpp to match .h

* llama : minor simplifications

* llama : refactor llama_model_loader (WIP)

wip : remove ggml_ctx from llama_model_loader

wip : merge gguf_file_loader in llama_model_loader

* llama : fix shape prints

* llama : fix Windows build + fix norm_rms_eps key

* llama : throw error on missing KV paris in model meta data

* llama : improve printing + log meta data

* llama : switch print order of meta data

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>

* gguf : deduplicate (#2629)

* gguf : better type names

* dedup : CPU + Metal is working

* ggml : fix warnings about unused results

* llama.cpp : fix line feed and compiler warning

* llama : fix strncpy warning + note token_to_str does not write null

* llama : restore the original load/save session implementation

Will migrate this to GGUF in the future

* convert-llama-h5-to-gguf.py : support alt ctx param name

* ggml : assert when using ggml_mul with non-F32 src1

* examples : dedup simple

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>

* gguf.py : merge all files in gguf.py

* convert-new.py : pick #2427 for HF 70B support

* examples/gguf : no need to keep q option for quantization any more

* llama.cpp : print actual model size

* llama.cpp : use ggml_elements()

* convert-new.py : output gguf (#2635)

* convert-new.py : output gguf (WIP)

* convert-new.py : add gguf key-value pairs

* llama : add hparams.ctx_train + no longer print ftype

* convert-new.py : minor fixes

* convert-new.py : vocab-only option should work now

* llama : fix tokenizer to use llama_char_to_byte

* tests : add new ggml-vocab-llama.gguf

* convert-new.py : tensor name mapping

* convert-new.py : add map for skipping tensor serialization

* convert-new.py : convert script now works

* gguf.py : pick some of the refactoring from #2644

* convert-new.py : minor fixes

* convert.py : update to support GGUF output

* Revert "ci : disable CI temporary to not waste energy"

This reverts commit 7e82d25f40.

* convert.py : n_head_kv optional and .gguf file extension

* convert.py : better always have n_head_kv and default it to n_head

* llama : sync with recent PRs on master

* editorconfig : ignore models folder

ggml-ci

* ci : update ".bin" to ".gguf" extension

ggml-ci

* llama : fix llama_model_loader memory leak

* gptneox : move as a WIP example

* llama : fix lambda capture

ggml-ci

* ggml : fix bug in gguf_set_kv

ggml-ci

* common.h : .bin --> .gguf

* quantize-stats.cpp : .bin --> .gguf

* convert.py : fix HF tensor permuting / unpacking

ggml-ci

* llama.cpp : typo

* llama : throw error if gguf fails to init from file

ggml-ci

* llama : fix tensor name grepping during quantization

ggml-ci

* gguf.py : write tensors in a single pass (#2644)

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : style fixes in simple conversion script

* gguf : refactor gptneox conversion script

* gguf : rename h5 to hf (for HuggingFace)

* gguf : refactor pth to gguf conversion script

* gguf : rm file_type key and method

* gguf.py : fix vertical alignment

* gguf.py : indentation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* convert-gptneox-hf-to-gguf.py : fixes

* gguf.py : gptneox mapping

* convert-llama-hf-to-gguf.py : fixes

* convert-llama-7b-pth-to-gguf.py : fixes

* ggml.h : reverse GGUF_MAGIC

* gguf.py : reverse GGUF_MAGIC

* test-tokenizer-0.cpp : fix warning

* llama.cpp : print kv general.name

* llama.cpp : get special token kv and linefeed token id

* llama : print number of tensors per type + print arch + style

* tests : update vocab file with new magic

* editorconfig : fix whitespaces

* llama : re-order functions

* llama : remove C++ API + reorganize common source in /common dir

* llama : minor API updates

* llama : avoid hardcoded special tokens

* llama : fix MPI build

ggml-ci

* llama : introduce enum llama_vocab_type + remove hardcoded string constants

* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested

* falcon-main.cpp : falcon inference example

* convert-falcon-hf-to-gguf.py : remove extra kv

* convert-gptneox-hf-to-gguf.py : remove extra kv

* convert-llama-7b-pth-to-gguf.py : remove extra kv

* convert-llama-hf-to-gguf.py : remove extra kv

* gguf.py : fix for falcon 40b

* falcon-main.cpp : fix for falcon 40b

* convert-falcon-hf-to-gguf.py : update ref

* convert-falcon-hf-to-gguf.py : add tensor data layout

* cmpnct_gpt2bpe.hpp : fixes

* falcon-main.cpp : fixes

* gptneox-main.cpp : fixes

* cmpnct_gpt2bpe.hpp : remove non-general stuff

* Update examples/server/README.md

Co-authored-by: slaren <slarengh@gmail.com>

* cmpnct_gpt2bpe.hpp : cleanup

* convert-llama-hf-to-gguf.py : special tokens

* convert-llama-7b-pth-to-gguf.py : special tokens

* convert-permute-debug.py : permute debug print

* convert-permute-debug-master.py : permute debug for master

* convert-permute-debug.py : change permute type of attn_q

* convert.py : 70b model working (change attn_q permute)

* Delete convert-permute-debug-master.py

* Delete convert-permute-debug.py

* convert-llama-hf-to-gguf.py : fix attn_q permute

* gguf.py : fix rope scale kv

* convert-llama-hf-to-gguf.py : rope scale and added tokens

* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens

* llama.cpp : use rope scale kv

* convert-llama-7b-pth-to-gguf.py : rope scale fix

* convert-llama-hf-to-gguf.py : rope scale fix

* py : fix whitespace

* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)

* First pass at converting GGMLv3 LLaMA models to GGUF

* Cleanups, better output during conversion

* Fix vocab space conversion logic

* More vocab conversion fixes

* Add description to converted GGUF files

* Improve help text, expand warning

* Allow specifying name and description for output GGUF

* Allow overriding vocab and hyperparams from original model metadata

* Use correct params override var name

* Fix wrong type size for Q8_K

Better handling of original style metadata

* Set default value for gguf add_tensor raw_shape KW arg

* llama : improve token type support (#2668)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* llama : add API for token type

ggml-ci

* tests : use new tokenizer type API (#2692)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* Improve commentary

* Use token type API in test-tokenizer-1.cpp

* py : cosmetics

* readme : add notice about new file format

ggml-ci

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 23:07:43 +03:00
Kolen Cheung
0919a0f73d
cmake : install ggml-meta.metal if LLAMA_METAL (#2449) 2023-08-16 23:09:49 +03:00
Shouzheng Liu
bf83bff674
metal : matrix-matrix multiplication kernel (#2615)
* metal: matrix-matrix multiplication kernel

This commit removes MPS and uses custom matrix-matrix multiplication
kernels for all quantization types. This commit also adds grouped-query
attention to support llama2 70B.

* metal: fix performance degradation from gqa

Integers are slow on the GPU, and 64-bit divides are extremely slow.
In the context of GQA, we introduce a 64-bit divide that cannot be
optimized out by the compiler, which results in a decrease of ~8% in
inference performance. This commit fixes that issue by calculating a
part of the offset with a 32-bit divide. Naturally, this limits the
size of a single matrix to ~4GB. However, this limitation should
suffice for the near future.

* metal: fix bugs for GQA and perplexity test.

I mixed up ne02 and nb02 in previous commit.
2023-08-16 23:07:04 +03:00
Johannes Gäßler
f64d44a9b9
CUDA: Fixed OpenLLaMA 3b mmq, reduced compile time (#2590) 2023-08-13 00:24:45 +02:00
Johannes Gäßler
4f6b60c776
CUDA: Fix models with output size != 32000 (#2480) 2023-08-02 16:48:10 +02:00
Johannes Gäßler
b772bba42e
CUDA: fixed cmake F16 option (#2471) 2023-07-31 19:52:22 +02:00
Johannes Gäßler
0728c5a8b9
CUDA: mmq CLI option, fixed mmq build issues (#2453) 2023-07-31 15:44:35 +02:00
slaren
a113689571
ggml : add graph tensor allocator (#2411)
* ggml : add graph tensor allocator

* ggml : don't calculate data pointer of unallocated tensors when creating a view with an offset

* ggml : refactor ggml_view_Nd into ggml_view_tensor_offset
2023-07-30 15:58:01 +02:00
Johannes Gäßler
11f3ca06b8
CUDA: Quantized matrix matrix multiplication (#2160)
* mmq implementation for non k-quants

* q6_K

* q2_K

* q3_k

* q4_K

* vdr

* q5_K

* faster q8_1 loading

* loop unrolling

* add __restrict__

* q2_K sc_high

* GGML_CUDA_MMQ_Y

* Updated Makefile

* Update Makefile

* DMMV_F16 -> F16

* Updated README, CMakeLists

* Fix CMakeLists.txt

* Fix CMakeLists.txt

* Fix multi GPU out-of-bounds
2023-07-29 23:04:44 +02:00
Cebtenzzre
6df1f5940f
make : build with -Wmissing-prototypes (#2394) 2023-07-26 21:00:04 +03:00
wzy
78a3d13424
flake : remove intel mkl from flake.nix due to missing files (#2277)
NixOS's mkl misses some libraries like mkl-sdl.pc. See #2261
Currently NixOS doesn't have intel C compiler (icx, icpx). See https://discourse.nixos.org/t/packaging-intel-math-kernel-libraries-mkl/975
So remove it from flake.nix

Some minor changes:

- Change pkgs.python310 to pkgs.python3 to keep latest
- Add pkgconfig to devShells.default
- Remove installPhase because we have `cmake --install` from #2256
2023-07-21 13:26:34 +03:00
wzy
45a1b07e9b
flake : update flake.nix (#2270)
When `isx86_32 || isx86_64`, it will use mkl, else openblas

According to
https://discourse.nixos.org/t/rpath-of-binary-contains-a-forbidden-reference-to-build/12200/3,
add -DCMAKE_SKIP_BUILD_RPATH=ON

Fix #2261, Nix doesn't provide mkl-sdl.pc.
When we build with -DBUILD_SHARED_LIBS=ON, -DLLAMA_BLAS_VENDOR=Intel10_lp64
replace mkl-sdl.pc by mkl-dynamic-lp64-iomp.pc
2023-07-19 10:01:55 +03:00
wzy
b1f4290953
cmake : install targets (#2256)
fix #2252
2023-07-19 10:01:11 +03:00
Howard Su
4e7464ef88
FP16 is supported in CM=6.0 (#2177)
* FP16 is supported in CM=6.0

* Building PTX code for both of 60 and 61

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-07-12 20:18:40 +08:00
Evan Miller
5656d10599
mpi : add support for distributed inference via MPI (#2099)
* MPI support, first cut

* fix warnings, update README

* fixes

* wrap includes

* PR comments

* Update CMakeLists.txt

* Add GH workflow, fix test

* Add info to README

* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)

* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()

* mpi : move all MPI logic into ggml-mpi

Not tested yet

* mpi : various fixes - communication now works but results are wrong

* mpi : fix output tensor after MPI compute (still not working)

* mpi : fix inference

* mpi : minor

* Add OpenMPI to GH action

* [mpi] continue-on-error: true

* mpi : fix after master merge

* [mpi] Link MPI C++ libraries to fix OpenMPI

* tests : fix new llama_backend API

* [mpi] use MPI_INT32_T

* mpi : factor out recv / send in functions and reuse

* mpi : extend API to allow usage with outer backends (e.g. Metal)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-10 18:49:56 +03:00
clyang
3bbc1a11f0
ggml : fix buidling with Intel MKL but ask for "cblas.h" issue (#2104) (#2115)
* Fix buidling with Intel MKL but ask for "cblas.h" issue

* Use angle brackets to indicate the system library
2023-07-09 11:12:20 +03:00
Johannes Gäßler
924dd22fd3
Quantized dot products for CUDA mul mat vec (#2067) 2023-07-05 14:19:42 +02:00
Tobias Lütke
7ee76e45af
Simple webchat for server (#1998)
* expose simple web interface on root domain

* embed index and add --path for choosing static dir

* allow server to multithread

because web browsers send a lot of garbage requests we want the server
to multithread when serving 404s for favicon's etc. To avoid blowing up
llama we just take a mutex when it's invoked.


* let's try this with the xxd tool instead and see if msvc is happier with that

* enable server in Makefiles

* add /completion.js file to make it easy to use the server from js

* slightly nicer css

* rework state management into session, expose historyTemplate to settings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-04 16:05:27 +02:00
Daniel Drake
b213227067
cmake : don't force -mcpu=native on aarch64 (#2063)
It's currently not possible to cross-compile llama.cpp for aarch64
because CMakeLists.txt forces -mcpu=native for that target.

-mcpu=native doesn't make sense if your build host is not the
target architecture, and clang rejects it for that reason, aborting the
build. This can be easily reproduced using the current Android NDK to build
for aarch64 on an x86_64 host.

If there is not a specific CPU-tuning target for aarch64 then -mcpu
should be omitted completely. I think that makes sense, there is not
enough variance in the aarch64 instruction set to warrant a fixed -mcpu
optimization at this point. And if someone is building natively and wishes
to enable any possible optimizations for the host device, then there is
already the LLAMA_NATIVE option available.

Fixes #495.
2023-07-01 21:31:44 +03:00
Kawrakow
6769e944c7
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights

* k_quants: WIP super-blocks with 64 weights

Q6_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q4_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)

* k_quants: WIP super-blocks with 64 weights

Q3_K scalar and AVX2 works.

* k_quants: WIP super-blocks with 64 weights

Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar

* k_quants: WIP super-blocks with 64 weights

Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,

* k_quants: WIP super-blocks with 64 weights

Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q3_K working on CUDA.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on CUDA, and with this CUDA is done.

* k_quants: WIP super-blocks with 64 weights

Q6_K working on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Q4_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q2_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.

With that, we have full support for ARM_NEON, although
performance is not quite there.

* k_quants: WIP super-blocks with 64 weights

Slightly more efficient Q3_K and Q5_K

* k_quants: WIP super-blocks with 64 weights

Another small improvement for Q3_K and Q5_K on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.

* k_quants: WIP super-blocks with 64 weights

* We are able to pass preprocessor macros to the Metal
  compiler
* Q6_K works and is actually slightly more efficient than
  the QK_K = 256 version (25.2 ms vs 25.8 ms)

* k_quants: WIP super-blocks with 64 weights

Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).

* k_quants: WIP super-blocks with 64 weights

Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).

* k_quants: WIP super-blocks with 64 weights

Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).

* k_quants: WIP super-blocks with 64 weights

Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).

* k_quants: call them _K, not _k, also on Metal

* k_quants: correctly define QK_K in llama.cpp

* Fixed bug in q4_K quantization added with the 64-block addition

* Simplify via lambda

* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64

Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.

* k_quants: switch Q4_K to 4-bit scales when QK_K = 64

 Here the loss in accuracy is greater than for Q3_K,
 but the Q4_K points still move further to the left on
 the perplexity vs size curve.

* k_quants: forgot to add the Metal changes in last commit

* k_quants: change Q5_K to be type 0 when QK_K = 64

Still needs AVX2 implementation

* k_quants: AVX2 implementation for new 64-weight Q5_K

* k_quants: 10% faster ARM_NEON Q5_K dot product

* k_quants: fixed issue caused by merging with master

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 19:43:07 +03:00
Johannes Gäßler
bbca06e269
cmake: revert CUDA arch default to 52, 61 if f16 (#1959) 2023-06-21 23:49:25 +02:00
Georgi Gerganov
23fc5c219a
cmake : fix trailing whitespaces 2023-06-19 18:18:34 +03:00
Howard Su
1e3abfcef0
cmake : fix build shared ggml when CUDA is enabled (#1929)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-19 18:10:37 +03:00
Johannes Gäßler
16b9cd1939
Convert vector to f16 for dequantize mul mat vec (#1913)
* Convert vector to f16 for dmmv

* compile option

* Added compilation option description to README

* Changed cmake CUDA_ARCHITECTURES from "OFF" to "native"
2023-06-19 10:23:56 +02:00
Howard Su
57cd69460f
cmake : add CUDA_ARCHITECTURES to new target ggml_static (#1917) 2023-06-18 07:29:47 +03:00
Kerfuffle
b4c6f46f17
Allow cmake to build ggml as a library (#1896)
* Allow cmake to build ggml as a library

* A ggml_static library will be created

* When BUILD_SHARED_LIBS is enabled, ggml_shared will also be built
2023-06-17 01:49:42 -06:00
Zenix
13fe9d2d84
cmake : add auto detection of BLAS_INCLUDE_DIRS (#1886) 2023-06-16 21:53:04 +03:00
Kawrakow
3d01122610
CUDA : faster k-quant dot kernels (#1862)
* cuda : faster k-quant dot kernels

* Imrove Q2_K dot kernel on older GPUs

We now have a K_QUANTS_PER_ITERATION macro, which should be
set to 1 on older and to 2 on newer GPUs.
With this, we preserve the performance of the original
PR on RTX-4080, and are faster compared to master on
GTX-1660.

* Imrove Q6_K dot kernel on older GPUs

Using the same K_QUANTS_PER_ITERATION macro as last commit,
we preserve performance on RTX-4080 and speed up
Q6_K on a GTX-1660.

* Add LLAMA_CUDA_KQUANTS_ITER to CMakeLists.txt and Makefile

Allowed values are 1 or 2. 2 gives the best performance on
modern GPUs and is set as default. On older GPUs 1 may work
better.

* PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-16 20:08:44 +03:00
Georgi Gerganov
bed9275617
cmake : remove whitespaces 2023-06-15 21:56:50 +03:00
Igor Okulist
3559433fec
cmake : set include path for OpenBlas (#1830) 2023-06-15 20:51:26 +03:00
Georgi Gerganov
4de0334f5c
cmake : fix Metal build (close #1791) 2023-06-10 22:56:53 +03:00
Andrei
303f5809f1
metal : fix issue with ggml-metal.metal path. Closes #1769 (#1782)
* Fix issue with ggml-metal.metal path

* Add ggml-metal.metal as a resource for llama target

* Update flake.nix metal kernel substitution
2023-06-10 17:47:34 +03:00
johnson442
0035858273
k-quants : add missing compile definition to CMakeLists (#1748) 2023-06-08 10:02:48 +03:00
Georgi Gerganov
5c64a0952e
k-quants : allow to optionally disable at compile time (#1734)
* k-quants : put behind optional compile flag LLAMA_K_QUANTS

* build : enable k-quants by default
2023-06-07 10:59:52 +03:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00
Georgi Gerganov
ecb217db4f
llama : Metal inference (#1642)
* mtl : export the LLaMA computation graph

* ci : disable temporary

* mtl : adapt the MNIST example as starter

* mtl : no need for mtl-export tool, add cli arg for main instead

* mtl : export just a small part of the graph for now to make it easier

* mtl : move MSL code into separate file for easy editing

* mtl : initial get_rows_q4_0 kernel

* mtl : confirmed get_rows_q4_0 is working correctly

* mtl : add rms_norm kernel + confirm working

* mtl : add mul kernel + confirm working

* mtl : initial mul_mat Q4 kernel (wrong results)

* mtl : mul_mat fixes (still wrong)

* mtl : another mul_mat Q4 (still does not work)

* mtl : working mul_mat q4

* ggml : fix handling of "view" ops in ggml_graph_import()

* mtl : add rope kernel

* mtl : add reshape and transpose handling

* ggml : store offset as opt arg for ggml_view_xd() operators

* mtl : add cpy kernel + handle view ops

* mtl : confirm f16 x f32 attention mul mat

* mtl : add scale kernel

* mtl : add diag_mask_inf kernel

* mtl : fix soft_max kernel

* ggml : update ggml_nbytes() to handle non-contiguous tensors

* mtl : verify V tensor contents

* mtl : add f32 -> f32 cpy kernel

* mtl : add silu kernel

* mtl : add non-broadcast mul kernel

* mtl : full GPU inference of the computation graph

* mtl : optimize rms_norm and soft_max kernels

* mtl : add f16 mat x f32 vec multiplication kernel

* mtl : fix bug in f16 x f32 mul mat + speed-up computation

* mtl : faster mul_mat_q4_0_f32 kernel

* mtl : fix kernel signature + roll inner loop

* mtl : more threads for rms_norm + better timing

* mtl : remove printfs from inner loop

* mtl : simplify implementation

* mtl : add save/load vocab to ggml file

* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)

* mtl : make it work with main example

Lots of hacks but at least now it generates text

* mtl : preparing for merge

* mtl : clean-up ggml mtl interface + suport scratch / inplace

* mtl : remove temp / debug code

* metal : final refactoring and simplification

* Revert "ci : disable temporary"

This reverts commit 98c267fc77.

* metal : add comments

* metal : clean-up stuff, fix typos

* readme : add Metal instructions

* readme : add example for main
2023-06-04 23:34:30 +03:00
Henri Vasserman
0ecb1bbbeb
[CI] Fix openblas (#1613)
* Fix OpenBLAS build

* Fix `LLAMA_BLAS_VENDOR` CMake variable that should be a string and not a boolean.
2023-05-27 17:24:06 +03:00
Johannes Gäßler
1fcdcc28b1
cuda : performance optimizations (#1530)
* xor hack

* block y dim

* loop unrolling

* Fixed cmake LLAMA_CUDA_BY option

* Removed hipblas compatibility code

* Define GGML_CUDA_DMMV_BLOCK_Y if not defined

* Fewer iters, more ops per iter

* Renamed DMMV X/Y compilation options
2023-05-26 00:07:29 +03:00
0cc4m
2e6cd4b025
OpenCL Token Generation Acceleration (#1459)
* Move back to C++ for OpenCL

* Refactor OpenCL code to work more like the CUDA code, add missing functions

* Deduplicate dequant kernels

* Add OpenCL compile options

* Use compile args for preprocessing constants

* Restore default platform + device selection by id behavior

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Henri Vasserman <henv@hot.ee>
2023-05-23 00:33:24 +03:00
Steward Garcia
7e4ea5beff
examples : add server example with REST API (#1443)
* Added httplib support

* Added readme for server example

* fixed some bugs

* Fix the build error on Macbook

* changed json11 to nlohmann-json

* removed some whitespaces

* remove trailing whitespace

* added support custom prompts and more functions

* some corrections and added as cmake option
2023-05-21 20:51:18 +03:00
Zenix
b8ee340abe
feature : support blis and other blas implementation (#1536)
* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix: blas changes on ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-20 17:58:31 +03:00
Georgi Gerganov
ea600071cb
Revert "feature : add blis and other BLAS implementation support (#1502)"
This reverts commit 07e9ace0f9.
2023-05-20 12:03:48 +03:00
Zenix
07e9ace0f9
feature : add blis and other BLAS implementation support (#1502)
* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-20 12:02:48 +03:00
kuvaus
9daff419f6
fix build-info.h for git submodules (#1289)
* make git build info work with submodules

---------

Co-authored-by: Green Sky <green@g-s.xyz>
2023-05-03 02:43:43 +02:00
Marvin Gießing
cc0bb7235c
ggml : fix ppc64le build error and make cmake detect Power processors (#1284)
* Fix ppc64le build issue

* Added support to detect ppc64* processors
2023-05-02 19:42:16 +03:00
DannyDaemonic
f4cef87edf
Add git-based build information for better issue tracking (#1232)
* Add git-based build information for better issue tracking

* macOS fix

* "build (hash)" and "CMAKE_SOURCE_DIR" changes

* Redo "CMAKE_CURRENT_SOURCE_DIR" and clearer build messages

* Fix conditional dependency on missing target

* Broke out build-info.cmake, added find_package fallback, and added build into to all examples, added dependencies to Makefile

* 4 space indenting for cmake, attempt to clean up my mess in Makefile

* Short hash, less fancy Makefile, and don't modify build-info.h if it wouldn't change it
2023-05-01 18:23:47 +02:00
Pavol Rusnak
6f79699286
build: add armv{6,7,8} support to cmake (#1251)
- flags copied from Makefile
- updated comments in both CMakeLists.txt and Makefile to match reality
2023-04-30 20:48:38 +02:00
Georgi Gerganov
305eb5afd5
build : fix reference to old llama_util.h 2023-04-29 13:53:12 +03:00
0cc4m
7296c961d9
ggml : add CLBlast support (#1164)
* Allow use of OpenCL GPU-based BLAS using ClBlast instead of OpenBLAS for context processing

* Improve ClBlast implementation, avoid recreating buffers, remove redundant transfers

* Finish merge of ClBlast support

* Move CLBlast implementation to separate file

Add buffer reuse code (adapted from slaren's cuda implementation)

* Add q4_2 and q4_3 CLBlast support, improve code

* Double CLBlast speed by disabling OpenBLAS thread workaround

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>

* Fix device selection env variable names

* Fix cast in opencl kernels

* Add CLBlast to CMakeLists.txt

* Replace buffer pool with static buffers a, b, qb, c

Fix compile warnings

* Fix typos, use GGML_TYPE defines, improve code

* Improve btype dequant kernel selection code, add error if type is unsupported

* Improve code quality

* Move internal stuff out of header
* Use internal enums instead of CLBlast enums
* Remove leftover C++ includes and defines
* Make event use easier to read

Co-authored-by: Henri Vasserman <henv@hot.ee>

* Use c compiler for opencl files

* Simplify code, fix include

* First check error, then release event

* Make globals static, fix indentation

* Rename dequant kernels file to conform with other file names

* Fix import cl file name

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-28 17:57:16 +03:00
Georgi Gerganov
0e018fe008
ggml : fix Q4_3 cuBLAS 2023-04-22 16:32:07 +03:00
Howard Su
7e312f165c
cmake : fix build under Windows when enable BUILD_SHARED_LIBS (#1100)
* Fix build under Windows when enable BUILD_SHARED_LIBS

* Make AVX512 test on Windows to build the shared libs
2023-04-22 11:18:20 +03:00
源文雨
018f2279f5
cmake : link threads publicly to ggml (#1042)
* fix: ld link test-tokenizer-0 error

```
cmake3 --build . --config Release
[  5%] Built target ggml
[ 16%] Built target llama
[ 22%] Linking CXX executable ../bin/test-tokenizer-0
../libllama.a(ggml.c.o):在函数‘ggml_graph_compute’中:
ggml.c:(.text+0xf2db):对‘pthread_create’未定义的引用
ggml.c:(.text+0xf9d4):对‘pthread_join’未定义的引用
collect2: error: ld returned 1 exit status
gmake[2]: *** [bin/test-tokenizer-0] 错误 1
gmake[1]: *** [tests/CMakeFiles/test-tokenizer-0.dir/all] 错误 2
gmake: *** [all] 错误 2
```

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt
2023-04-21 21:27:06 +03:00
slaren
02d6988121
Improve cuBLAS performance by dequantizing on the GPU (#1065) 2023-04-20 03:14:14 +02:00
Stephan Walter
f3d4edf504
ggml : Q4 cleanup - remove 4-bit dot product code (#1061)
* Q4 cleanup

* Remove unused AVX512 Q4_0 code
2023-04-19 19:06:37 +03:00
slaren
8944a13296
Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00
Kawrakow
5ecff35151
Adding a simple program to measure speed of dot products (#1041)
On my Mac, the direct Q4_1 product is marginally slower
(~69 vs ~55 us for Q4_0). The SIMD-ified ggml version
is now almost 2X slower (~121 us).

On a Ryzen 7950X CPU, the direct product for Q4_1 quantization
is faster than the AVX2 implementation (~60 vs ~62 us).

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-04-18 19:00:14 +00:00
Ivan Komarov
f266259ad9
Speedup the AVX-512 implementation of ggml_vec_dot_q4_0() (#933) 2023-04-17 15:10:57 +02:00
katsu560
106faaf297
cmake : add finding the OpenBLAS header file (#992) 2023-04-15 08:51:11 +03:00
Georgi Gerganov
9190e8eac8
llama : merge llama_internal.h into llama.h
Hide it behind an #ifdef
2023-04-13 18:04:45 +03:00
anzz1
585d91a156
cmake : add explicit F16C option (x86) (#576)
Fixes building for x86 processors missing F16C featureset
MSVC not included, as in MSVC F16C is implied with AVX2/AVX512
2023-04-13 15:48:21 +03:00
comex
f963b63afa Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt).  (However, I didn't
  include the hack needed to support GPT4All files without conversion.
  Those can still be used after converting them with convert.py from my
  other PR.)

- Support both mmap and read (mmap is used by default, but can be
  disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
  files or on platforms where mmap is not supported).

- Support multi-file models like before, but automatically determine the
  number of parts rather than requiring `--n_parts`.

- Improve validation and error checking.

- Stop using the per-file type field (f16) entirely in favor of just
  relying on the per-tensor type/size fields.  This has no immediate
  benefit, but makes it easier to experiment with different formats, and
  should make it easier to support the new GPTQ-for-LLaMa models in the
  future (I have some work in progress on that front).

- Support VirtualLock on Windows (using the same `--mlock` option as on
  Unix).

    - Indicate loading progress when using mmap + mlock.  (Which led me
      to the interesting observation that on my Linux machine, with a
      warm file cache, mlock actually takes some time, whereas mmap
      without mlock starts almost instantly...)

      - To help implement this, move mlock support from ggml to the
        loading code.

- madvise/PrefetchVirtualMemory support (based on #740)

- Switch from ifstream to the `fopen` family of functions to avoid
  unnecessary copying and, when mmap is enabled, allow reusing the same
  file descriptor for both metadata reads and mmap (whereas the existing
  implementation opens the file a second time to mmap).

- Quantization now produces a single-file output even with multi-file
  inputs (not really a feature as much as 'it was easier this way').

Implementation notes:

I tried to factor the code into more discrete pieces than before.

Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:

- Destructors to make it easier to ensure everything gets cleaned up.

- Exceptions.  I don't even usually use exceptions when writing C++, and
  I can remove them if desired... but here they make the loading code
  much more succinct while still properly handling a variety of errors,
  ranging from API calls failing to integer overflow and allocation
  failure.  The exceptions are converted to error codes at the
  API boundary.)

Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-10 01:10:46 +02:00
eiery
f2d1c47294
cmake should link openblas properly with -lopenblas like how it's done in the makefile (#839) 2023-04-08 11:15:17 +00:00
Stephan Walter
3525899277
Enable -std= for cmake builds, fix warnings (#598) 2023-03-31 19:19:16 +00:00
Stephan Walter
3bcc129ba8
cmake : properly invoke CTest (#629) 2023-03-30 20:56:59 +03:00
Georgi Gerganov
d502bc7c9d
tests : free llama context at the end of the test 2023-03-28 19:51:55 +03:00
Stephan Walter
436e561931
all : be more strict about converting float to double (#458)
* Be more strict about converting float to double

* Test equivalence of round, SILU implementations

Test module is commented out in CMakeLists.txt because the tests may
take a long time, depending on how much the compiler optimizes.

* Fix softmax in perplexity.cpp

* all : prefer float over double where appropriate

* perplexity : add <cmath>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 19:48:20 +03:00
anzz1
2f7bf7dd7c
CMake / CI additions (#497)
* CMake: Add AVX512 option

* CI: Add AVX/AVX512 builds (Windows)
(AVX512 tests can only be run when the worker happens to support it, building works anyway)

* CMake: Fix sanitizer linkage ( merged #468 )

* CI: Add sanitizer builds (Ubuntu)

* CI: Fix release tagging
(change @zendesk/action-create-release to @anzz1/action-create-release until upstream PR Added commitish as input zendesk/action-create-release#32 is merged)
2023-03-25 23:38:11 +02:00
Georgi Gerganov
a316a425d0
Overhaul the examples structure
- main -> examples
- utils -> examples (renamed to "common")
- quantize -> examples
- separate tools for "perplexity" and "embedding"

Hope I didn't break something !
2023-03-25 20:26:40 +02:00
nusu-github
ad072fc5ad
Generate library with CMake (#430)
* Generate library with CMake

BUILD_SHARED_LIBS to allow llama library to be generated.

* Turn ON PIC when BUILD_SHARED_LIBS is ON
2023-03-23 21:16:48 +01:00
Erik Scholz
4122dffff9
cmake: make llama an actual library (#392) 2023-03-22 18:37:10 +02:00
Georgi Gerganov
f5a77a629b
Introduce C-style API (#370)
* Major refactoring - introduce C-style API

* Clean up

* Add <cassert>

* Add <iterator>

* Add <algorithm> ....

* Fix timing reporting and accumulation

* Measure eval time only for single-token calls

* Change llama_tokenize return meaning
2023-03-22 07:32:36 +02:00
Georgi Gerganov
eb34620aec
Add tokenizer test + revert to C++11 (#355)
* Add test-tokenizer-0 to do a few tokenizations - feel free to expand
* Added option to convert-pth-to-ggml.py script to dump just the vocabulary
* Added ./models/ggml-vocab.bin containing just LLaMA vocab data (used for tests)
* Added utility to load vocabulary file from previous point (temporary implementation)
* Avoid using std::string_view and drop back to C++11 (hope I didn't break something)
* Rename gpt_vocab -> llama_vocab
* All CMake binaries go into ./bin/ now
2023-03-21 17:29:41 +02:00
nusu-github
8cf9f34edd
Adding missing features of CMakeLists.txt & Refactoring (#131)
* Functionality addition CMakeLists.txt

Refactoring:
1. Simplify more options that are negation of negation.
LLAMA_NO_ACCELERATE -> LLAMA_ACCELERATE
2. Changed to an optional expression instead of forcing to enable AVX2 in MSVC.
3. Make CMAKE_CXX_STANDARD, which is different from Makefile, the same.
4. Use add_compile_options instead of adding options to CMAKE_C_FLAGS.
5. Make utils use target_link_libraries instead of directly referencing code.

Added features:
1. Added some options.
LLAMA_STATIC_LINK,LLAMA_NATIVE,LLAMA_LTO,LLAMA_GPROF,LLAMA_OPENBLAS

* Fix Accelerate link in CMake

* Windows build Fix

* C++11 to C++17

* Reflects C/C++ standard individually

* Change the version to 3.12

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-21 01:37:16 +01:00
mmyjona
6b0df5ccf3
add ptread link to fix cmake build under linux (#114)
* add ptread link to fix cmake build under linux

* add cmake to linux and macos platform

* separate make and cmake workflow

---------

Co-authored-by: Sebastián A <sebastian.aedo29@gmail.com>
2023-03-17 13:38:24 -03:00
Georgi Gerganov
c09a9cfb06
CMake build in Release by default (#75) 2023-03-13 21:22:15 +02:00
Sebastián A
ed6849cc07
Initial support for CMake (#75) 2023-03-13 19:12:33 +02:00