Commit Graph

101 Commits

Author SHA1 Message Date
Georgi Gerganov
2f9ec7e271
cuda : improve text-generation and batched decoding performance (#3776)
* cuda : prints wip

* cuda : new cublas gemm branch for multi-batch quantized src0

* cuda : add F32 sgemm branch

* cuda : fine-tune >= VOLTA params + use MMQ only for small batches

* cuda : remove duplicated cuBLAS GEMM code

* cuda : add CUDA_USE_TENSOR_CORES and GGML_CUDA_FORCE_MMQ macros

* build : add compile option to force use of MMQ kernels
2023-10-27 17:01:23 +03:00
Marcus Dunn
5be6c803fa
llama : remove token functions with context args in favor of model (#3720)
* added `llama_model_token_*` variants to all the `llama_token_*` functions.

* added `LLAMA_API`

* formatting

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* removed old `llama_token` functions

* changed 3 more functions to take in model

- `llama_token_get_text`
- `llama_token_get_score`
- `llama_token_get_type`

* added back docs

* fixed main.cpp

* changed token functions to use new model variants

* changed token functions to use new model variants

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-23 22:40:03 +03:00
Georgi Gerganov
d1031cf49c
sampling : refactor init to use llama_sampling_params (#3696)
* sampling : refactor init to use llama_sampling_params

* llama : combine repetition, frequency and presence penalties in 1 call

* examples : remove embd-input and gptneox-wip

* sampling : rename penalty params + reduce size of "prev" vector

* sampling : add llama_sampling_print helper

* sampling : hide prev behind API and apply #3661

ggml-ci
2023-10-20 21:07:23 +03:00
Georgi Gerganov
0e89203b51
speculative : add tree-based sampling example (#3624)
* sampling : one sequence per sampling context

ggml-ci

* speculative : add tree-based sampling support

ggml-ci

* speculative : reuse the n_parallel CLI param

* speculative : refactor sampling

* examples : fix build after sampling refactoring

ggml-ci

* batched : fix n_seq_id

* sampling : fix malloc

ggml-ci

* swift : fix build

ggml-ci

* swift : try to fix build

ggml-ci

* prompts : add assistant.txt

* common : add llama_batch_add() and llama_batch_clear() helpers

* speculative : minor refactor

ggml-ci

* minor : comments + rename

ggml-ci

* speculative : fix off-by-one for n_drafted

* speculative : fix the n_drafted fix + p constants
2023-10-18 16:21:57 +03:00
staviq
1a159553f9
tokenizer : special token handling (#3538)
* Rewrite special token handling from #1931

* shorten param name, add st verification by type

* use offsets instead of copy by substr

* formatting, remove copying iterator on delete

* llama : normalize code-style

* swift fix

* print pfx/sfx if verb, main: split pfx input sfx

* dont add space when using special tokens

* minor : comment + spacing

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-17 18:11:01 +03:00
Georgi Gerganov
ac2219fef3
llama : fix session saving/loading (#3400)
* llama : fix session saving/loading

* llama : temp fix for clearing "future" tokens from the KV cache

* llama : fix handling of "future" tokens when loading sessions

* llama : fix comments for llama_kv_cache API
2023-10-03 21:04:01 +03:00
Alex Klinkhamer
48be797ffb
llama : expose model's rope_freq_scale in the API (#3418)
so it can be scaled further before creating a context.
2023-10-03 20:09:28 +03:00
vvhg1
c97f01c362
infill : add new example + extend server API (#3296)
* vvhg-code-infill (#1)

* infill in separate example (#2)

* reverted changes to main and added infill example

* cleanup

* naming improvement

* make : add missing blank line

* fix missing semicolon

* brought infill up to current main code

* cleanup

---------

Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-10-02 10:42:02 +03:00
slaren
40e07a60f9
llama.cpp : add documentation about rope_freq_base and scale values (#3401)
* llama.cpp : add documentation about rope_freq_base and scale values

* add notice to hot topics
2023-09-29 18:42:32 +02:00
slaren
16bc66d947
llama.cpp : split llama_context_params into model and context params (#3301)
* llama.cpp : split llama_context_params into model and context params

ggml-ci

* fix metal build

* fix freq_base/scale default to model value

* llama-bench : keep the same model between tests when possible

* move n_threads to llama_context_params, add n_threads_batch

* fix mpi build

* remove kv_size(), cuda scratch fixes

* remove low-vram option

* add n_threads_batch to system info, refactor to get_system_info()

* add documentation about --threads-batch to the READMEs

* llama-bench fix

* main : fix rope freq/scale warning

* llama.cpp : add llama_get_model
common : add llama_tokenize from model

* remove duplicated ctx/model functions

ggml-ci

* cuda : print total VRAM used
2023-09-28 22:42:38 +03:00
xaedes
0e76a8992c
train : finetune LORA (#2632)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add API functions to access llama model tensors

* add stub example for finetuning, based on train-text-from-scratch

* move and remove code

* add API functions to access remaining model parameters:

mult, head and rot

* first draft for LORA finetune training

* remove const model and layer arguments in API functions for accessing model tensors

* bug fixes to make finetune compile

automatic allocator does not work yet

* add debug prints for training memory improvements

* fix names of lora tensors

* avoid stack overflow resulting from big ggml_cgraph

replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand

* replace llama API functions to get model tensors by one function to get model tensor by name

LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);

* remove unused call to not existing llama_get_layer_from_model

* implement ggml_compute_forward_out_prod_q_f32

* remove trailing whitespace

* add lora finetune support on quantized base model tensors

* add ggml_add_cast API function

this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.

* use ggml_add_cast in finetuning

lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models

* bug fix: actually use result type passed to ggml_add_cast

* make sure base model tensors data cannot be used in viewable operations

memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations

* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors

* avoid keeping in memory ALL of the gradients

The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.

During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.

To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.

* remove trailing whitespace

* remove debug prints and function to compute tensor data hash

* improve optimization iteration prints

* adjust maximal values to support finetuning 3B models

* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4

* bug fix: make sure finetune input gradient is allocated at begin and kept until end

* remove unnecessary src tensor from ggml_get_rows_back

we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.

the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.

* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back

we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.

the computational graph is still completely determined, because the output shape is naturally included

* resolve todo

allocator will only make it inplace when they are of the same type

* mixing multiple LORA adapters is now possible

pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.

* add option to save finetune output every N iterations

* also save latest finetune output with ITERATION="LATEST" and print where files are saved

saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"

* update checkpoint train stats before saving via "--save-every"

* add command line option `--rank-wo N` for rank of wo tensor

* update finetune README

* fix dump_non_result_info_yaml to output multiple lora adapters

* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)

* replace llama_n_mult by llama_n_ff

* finetune bug fixes to compile with merged in code from master

* remove prediction related code to reduce duplicated code with main

use main instead

* reduce large memory overhead in train-text-from-scratch

all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.

* add comment explaining why finetune checkpoints are allocated in one block

* make default value of float member a float literal

* handle rms_norm and rope parameters the same as in train-text-from-scratch

* remove unused code

* remove vocab related code as it is unnecessary

* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints

so that they can be differentiated from lora finetune checkpoints

* add gguf constants and load/save functions from train-text-from-scratch

* add load & save lora finetune checkpoints via gguf

* add python script to convert old finetune checkpoint files to gguf

* remove old checkpoint save & load code

* remove code to print data checksums which was used to verify correctness of new gguf code

* omit tokenization when training is disabled, only save llama lora adapter

training can be disabled by passing '-n 0' to finetune

* remove trailing whitespace

* update README.md

* implement ggml_compute_forward_repeat_f16

* avoid stack overflow of large cgraphs in test-grad0

* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32

ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.

this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore

* increase test-grad0 context mem size to accommodate for bigger cgraph

* add sanity check to ggml_compute_backward, asserting the correct shape of gradients

* fix ggml_acc_or_set to return tensor of correct shape

* remove unused 'inplace' argument from ggml_compute_backward function

inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations

* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations

* fix error message in ggml_allocr_alloc to display actual max_avail

* fix check_gradient

ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing

* use tensor->view_src instead of ggml_is_view and get_view_source

* move gradient checkpointing code into ggml, new API function:

// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
        struct ggml_context   * ctx,
        struct ggml_cgraph    * gf,
        struct ggml_cgraph    * gb,
        struct ggml_cgraph    * gb_tmp,
        struct ggml_tensor  * * checkpoints,
        int                     n_checkpoints);

* replace custom data getters and setters by ggml functions

* train-text-from-scratch can train (full finetune) gguf models

just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.

tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.

* remove trailing whitespace

* add option to save train-text-from-scratch output every N iterations

* update README.md

* fix warnings

* fix warnings

* remove finetune option to disable allocator

the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation

* add tensor checkpoints only when gradient checkpointing is enabled

* initialize opt ggml context if none was provided

* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc

GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);

* finetune: automatically allocate all memory and changes to command line options

remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.

* add finetune to Makefile

* update README.md

* print time per iteration and estimate remaining time

* increase measured alloc size by tensor_alignment

ggml_allocr_reset will reduce the given size by up to tensor_alignment-1

* fix README.md

* add some more allocator debug prints

* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue

* revert last commit

"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"

"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."

This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.

* remove unnecessary "0x" before "%p" output

* move measurement memory segment to upper region of the address space

* update README.md

* fix printf format warnings

* add missing gguf_free in load_checkpoint_lora_file

* load default rms_norm and rope parameters from base model

* add gradient accumulation

specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.

* fix tracking of train_samples and train_tokens

* build : fix compile warnings

* ggml : fix L-BFGS linesearch loop

* improve finetune time measurement

fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.

* specify default lora rank with '--lora-r N'

'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.

* fix gradient accumulation bug where the same batch was used for each microstep

* fix gradient accumulation bug where the same batch was used for each microstep

* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back

k and v can now be repeated in q along ne[2]

in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.

in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.

since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.

we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.

change test-grad0 to also test for repeated k/v in q.

this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.

* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.

* fix finetune to support grouped-query-attention (using flash-attention)

note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.

* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)

* test broadcasting mul_mat backward pass

* decouple random number generator of each operation test

when changing one test the rng of others tests is not influenced anymore

* add comment briefly describing what ggml_repeat_back does

* simplify broadcasting mul_mat backward using ggml_repeat_back

* add cgraph evaluation order member and corresponding enum type

this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).

* measure max compute size for each cgraph eval order and use best order

this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB

* remove unused command line options

* add sample start patterns and options to force new or by default resume last shuffling

* update shuffle rng state on reshuffle

* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32

* remove probably unnecessary exception type flags from stringstream

* pass correct max number of tokens to llama_tokenize

* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]

* use unrolled vec_mad in out_prod

y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.

ggml_vec_mad_f32_unroll will internally loop over x and v with same y.

GGML_VEC_MAD_UNROLL is by default defined to 32.

This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.

Full measurements of out-prod runtime in ms:
	unroll_xv	unroll_yv
1	67014.643	87826.469
2	77117.552	89077.656
4	72091.311	109121.657
8	61077.543	88678.334
16	56914.67	79514.947
24	59024.595	84350.254
28	55952.446	83368.73
32	51476.658	85177.745
36	55973.792	84659.92
40	55139.616	93844.738
48	60736.392	93330.267
64	99856.878	116994.99

Second column is when unrollying yv instead of xv

* set lora_alpha to value of lora_r if it is not set via command line

otherwise only changing lora_r will change scaling of lora adapter used in prediction

* reshuffle original sample order instead of the previous shuffled order

otherwise resumed reshuffle will not result in same sample order

* block tiling for out-prod inspired by mul-mat

block sizes are empirically optimized

roughly doubles the flops of out-prod

* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32

* add static keywords

* remove outcommented old code

* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune

* remove lbfgs related train parameters

* move common train functions into common/train.[h|cpp]

* move train state into struct train_state

* move train data saving code into callback to unify code of opt_callback

train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp

* move common train params into common/train

* move common opt_callback into common/train

* fix consume_common_train_arg

* save and load head_count_kv in lora checkpoints

* increase train_samples by used_samples instead of number of batches

on batch can contain more than one sample when option "fill_with_next_samples" is used

* fix usage of llama_tokenize

* remove static from process_escape since we need it exposed in header

* fix code formating of long function declarations

* fix condition in load_train_state_gguf

* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")

* fix saving and loading of training type

* remove terminating '\0' from tokenization

(llama_tokenize is now passed the string length instead of relying on terminating '\0')

* fix compile warnings

* fix compile warnings

* use new/delete for train_state instead of malloc/free

using malloc may result in seg faults when trying to assign string fields

* assert that sample_count > 0, avoiding division by zero

* fix frand to return value in interval [0,1)

* add train option "--sample-random-offsets"

Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.

For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.

With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.

* deduplicate code into function

* remove n_rot hparam, as it must always be hparam.n_embd_head()

* align code

* assert correct base model tensor shapes

* move some params from lora hparams into model hparams and load model params from gguf

this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters

* remove now unnecessary llama API functions to get model params that where added by this PR

* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'

* train-text-from-scratch: automatically allocate opt context

* train-text-from-scratch: automatically allocate input tensors

* train-text-from-scratch: automatically allocate compute memory

* remove unused options and equalize train-text-from-scratch with finetune

* initialize opt->loss_after with zero

* add export-lora program

* remove trailing whitespace

* add export-lora build in Makefile

* remove unused struct tensor_info from export-lora

* add export-lora build dependency to llama

because it depends on common, which depends on llama

* update finetune README.md

* cancel optimization when specified number of epochs is completed

* improve handling of export-lora arguments

print errors and warnings when files could not be read or created

* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)

* Fix export-lora.cpp "not enough space in the context's memory pool"

Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".

* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16

---------

Co-authored-by: xaedes <xaedes@gmail.com>

* improve handling of not yet supported tensor types

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
2023-09-28 21:40:11 +03:00
Georgi Gerganov
ec893798b7
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive"

* llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask)

* ggml : ggml_rope now takes a vector with positions instead of n_past

* metal : add rope_f16 kernel + optimize cpy kernels

* llama : unified KV cache + batch inference API

* llama : add new llama_decode() API that works with llama_batch

* llama : add cell_max heuristic for more efficient kv_cache

* llama : extend llama_kv_cache API

* llama : more robust cell_max heuristic + wip shift

* metal : disable concurrency optimization

* llama : add llama_kv_cache_shift_seq + no more context swaps

* llama : apply K-cache roping for Falcon and Baichuan

* speculative : fix KV cache management

* parallel : example for serving multiple users in parallel

* parallel : disable hot-plug to avoid cache fragmentation

* fixes : speculative KV cache + llama worst-case graph

* llama : extend batch API to select which logits to output

* llama : fix worst case graph build

* ggml-cuda : update rope implementation for parallel decoding (#3254)

* ggml-cuda : update rope implementation for parallel decoding

* better solution for p0 computation

* fix rope

* simpler rope implementation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* make : add parallel to build + fix static functions in llama.cpp

* simple : fix token counting

* parallel : various improvements

* llama : fix cell_max logic + rename functions

* parallel : try smaller batches when the KV cache is fragmented

* parallel : fix sequence termination criteria

* llama : silence errors KV cache errors

* parallel : remove new line from prompt

* parallel : process system prompt once + configurable paramters + llama API

* parallel : remove question with short answers

* parallel : count cache misses

* parallel : print misses on each request

* parallel : minor

* llama : fix n_kv to never become 0

* parallel : rename hot-plug to continuous-batching

* llama : improve llama_batch API + simplify parallel example

* simple : add parallel decoding support

* simple : improve comments + free batch

* ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)

* ggml-cuda : add rope f16, restore performance

* offload KQ_mask with all models

* fix rope shift

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : disable MPI for now

ggml-ci

* train : make KQ_pos memory buffer permanent via dummy scale op

* ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275)

ggml-ci

* parallel : fix bug (extra BOS) + smaller token_prev array

* parallel : fix cases where the input prompts can overflow the batch

* parallel : add disabled experimental batch chunking in powers of two

* llama : llama.h formatting + comments

* simple : add README.md

* llama : fix kv cache heuristic when context is less than 32

* parallel : fix crash when `-n -1`

* llama : simplify returns if/else branches

* metal : use mm kernels for batch size > 2

* examples : utilize new llama_get_logits_ith()

* examples : add example for batched decoding

* examples : do not eval prompt 2 times (close #3348)

* server : clear the KV cache beyond n_past before llama_decode

* server : avoid context swaps by shifting the KV cache

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 19:04:36 +03:00
Rickard Hallerbäck
dc6897404e
metal : reusing llama.cpp logging (#3152)
* metal : reusing llama.cpp logging

* cmake : build fix

* metal : logging callback

* metal : logging va_args memory fix

* metal : minor cleanup

* metal : setting function like logging macro to capital letters

* llama.cpp : trailing whitespace fix

* ggml : log level enum used by llama

* Makefile : cleanup ggml-metal recipe

* ggml : ggml_log_callback typedef

* ggml : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-27 18:48:33 +03:00
goerch
b08e75baea
Fixing the last deviations from sentencepiece indicated by test-tokenizer-1 (#3170)
* Fix für #2721

* Reenable tokenizer test for LLaMa

* Add `console.cpp` dependency

* Fix dependency to `common`

* Fixing wrong fix.

* Make console usage platform specific

Work on compiler warnings.

* Adapting makefile

* Remove trailing whitespace

* Adapting the other parts of the makefile

* Fix typo.

* Fixing the last deviations from sentencepiece indicated by test-tokenizer-1

* Simplify logic

* Add missing change...

* Fix ugly compiler warning

* llama_tokenize should accept strings containing NUL now

* Adding huichen's test case
2023-09-16 13:41:33 +02:00
Cebtenzzre
3aefaab9e5
check C++ code with -Wmissing-declarations (#3184) 2023-09-15 15:38:27 -04:00
Cebtenzzre
e64f5b5578
examples : make n_ctx warning work again (#3066)
This was broken by commit e36ecdcc ("build : on Mac OS enable Metal by
default (#2901)").
2023-09-08 11:43:35 -04:00
Georgi Gerganov
921772104b
speculative : add grammar support (#2991)
* speculative : add grammar support

* grammars : add json_arr.gbnf

* grammar : add comments to new grammar file

* grammar : remove one nested level

* common : warm-up with 2 tokens - seems to work better

* speculative : print draft token pieces

* speculative : reuse grammar parser + better logs and comments

* speculative : avoid grammar_mem

* make : fix speculative build
2023-09-05 08:46:17 +03:00
Kerfuffle
5d6f19f16b
Allow quantize to only copy tensors, some other improvements (#2931)
* Allow quantize tool to only copy tensors to allow repackaging models.

* Slightly better logic when requantizing.

* Change help message to go to `stdout`.
2023-09-01 08:02:48 -06:00
Marcus Dunn
95b6e5212f
added struct to llama_dump_timing_info_yaml's llama_context (#2857)
fixes C compat.
2023-08-29 09:33:27 +03:00
Johannes Gäßler
6b73ef1201
YAML result logging + preset script (#2657) 2023-08-28 17:59:39 +02:00
igarnier
dd0dc366da
llama.h : add missing struct keyword for C compat in callback type (#2847) 2023-08-28 11:19:59 +03:00
Georgi Gerganov
edd4c14817
llama : more tokenizer fixes (#2810)
* tests : write a Python tokenizer test (wip)

* llama : prefix input text for tokenization with whitespace

* llama : distinguish pieces from decoded text + fix detokenization

* common : add comments

* examples : no longer manually add leading space when tokenizing

* tests : use Python to generate tokenizer tests for C++

* tests : add option to tokenize text files

ggml-ci

* tests : add test-tokenizer-1.py

* llama.cpp : fix LF token

* hellaswag : move the concat space for clarity

* tests : add falcon tests (py + cpp, currently do not pass Unicode)

ggml-ci

* common : temporary separate llama_detokenize calls for SPM and BPE

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27 14:19:19 +03:00
Marcus Dunn
232caf3c15
llama : fix struct decl (#2790) 2023-08-25 19:17:15 +03:00
Matt Pulver
c82742ac9c
llama : add llama_beam_search() (#2267)
* Add llama_beam_search().

* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().

* Add space around * pointers and & references.

* Add spaces around comparison and assignment operators.

* Prefer west const.

* Use llama_ prefix for structs in global namespace.

* Delete obsolete comment from an earlier revision.

* Change eos to eob in llama_beam and llama_beam_view structs.
2023-08-25 18:18:48 +03:00
slaren
154725c543
llama-bench : add model sizes (#2771)
* llama-bench : add model sizes

* more compact markdown output

* back to GiB

* adjust column sizes
2023-08-25 15:16:19 +02:00
Marcus Dunn
2e5f70a25f
Added enum to llama_token_get_type return type (#2774) 2023-08-24 23:49:30 +02:00
Georgi Gerganov
cf658adc83
llm : add Falcon support (#2717)
* llama : refactor GGUF constants into static maps

* llama : check if model architecture is known

* llama : refactor llama_model_load_internal()

* gguf : add KV constant maps

* llm : read arch-specific KVs

* convert : add dummy scores + types

* falcon : load tensor data (CPU only)

* llama : fix loading progress bar

* llama : add arch member to llama_model

* falcon : CPU inference working

* falcon : support non-40B models

* falcon : minor

* llama : minor updates

ggml-ci

* convert-falcon-hf-to-gguf.py : fix special token mapping

* llama.cpp : llama default UNK token = id 0

* llama.cpp : fix bpe tokenizer

* llama.cpp : fix the fix of bpe tokenizer

* ggml : pass eps to ggml_norm

* metal : implement RoPE (mode = 2) + avoid ggml_repeat

* ggml : ggml_repeat always creates new tensor

* falcon : copy-paste self-attention from LLaMA

* metal : print extra compute pipeline info

* falcon : minor changes (still chasing the Metal problem)

* llama.cpp : fix linefeed token

* metal : fix GELU kernel numerical stability by using precise::tanh

* metal : temporary workaround for the concurrency optimization bug

* falcon : add CUDA offloading (#2739)

* llama : better model naming and size reporting

* llama : prep new tokenizer support

* llama : advanced BPE tokenizer based on ggllm.cpp imlpementation

* llama : remove oboslete comment

ggml-ci

* common : remove obsolete BPE API + disable test-tokenizer-1

* llama : revert BPE special-case in llama_byte_to_token()

* cuda : add TODOs for RoPE NeoX implementation

* llama : default special tokens based on vocab type

* perplexity : add log for start of tokenization

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-08-23 23:08:04 +03:00
Georgi Gerganov
deb7dfca4b
gguf : add ftype meta info to the model (#2710)
* llama : add ftype meta info to the model

ggml-ci

* convert.py : add ftype when converting (does not work)

* convert.py : fix Enum to IntEnum

ggml-ci
2023-08-22 20:05:59 +03:00
Georgi Gerganov
6381d4e110
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass

* gguf : read header + meta data

* gguf : read tensor info

* gguf : initial model loading - not tested

* gguf : add gguf_get_tensor_name()

* gguf : do not support passing existing ggml_context to gguf_init

* gguf : simplify gguf_get_val

* gguf : gguf.c is now part of ggml.c

* gguf : read / write sample models

* gguf : add comments

* refactor : reduce code duplication and better API (#2415)

* gguf : expose the gguf_type enum through the API for now

* gguf : add array support

* gguf.py : some code style changes

* convert.py : start a new simplified implementation by removing old stuff

* convert.py : remove GGML vocab + other obsolete stuff

* GGUF : write tensor (#2426)

* WIP: Write tensor

* GGUF : Support writing tensors in Python

* refactor : rm unused import and upd todos

* fix : fix errors upd writing example

* rm example.gguf

* gitignore *.gguf

* undo formatting

* gguf : add gguf_find_key (#2438)

* gguf.cpp : find key example

* ggml.h : add gguf_find_key

* ggml.c : add gguf_find_key

* gguf : fix writing tensors

* gguf : do not hardcode tensor names to read

* gguf : write sample tensors to read

* gguf : add tokenization constants

* quick and dirty conversion example

* gguf : fix writing gguf arrays

* gguf : write tensors one by one and code reuse

* gguf : fix writing gguf arrays

* gguf : write tensors one by one

* gguf : write tensors one by one

* gguf : write tokenizer data

* gguf : upd gguf conversion script

* Update convert-llama-h5-to-gguf.py

* gguf : handle already encoded string

* ggml.h : get array str and f32

* ggml.c : get arr str and f32

* gguf.py : support any type

* Update convert-llama-h5-to-gguf.py

* gguf : fix set is not subscriptable

* gguf : update convert-llama-h5-to-gguf.py

* constants.py : add layer norm eps

* gguf.py : add layer norm eps and merges

* ggml.h : increase GGML_MAX_NAME to 64

* ggml.c : add gguf_get_arr_n

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Makefile : add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* gguf : support custom alignment value

* gguf : fix typo in function call

* gguf : mmap tensor data example

* fix : update convert-llama-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* convert-gptneox-h5-to-gguf.py : Special tokens

* gptneox-main.cpp : special tokens

* Update gptneox-main.cpp

* constants.py : special tokens

* gguf.py : accumulate kv and tensor info data + special tokens

* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens

* gguf : gguf counterpart of llama-util.h

* gguf-util.h : update note

* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens

* convert-llama-h5-to-gguf.py : special tokens

* Delete gptneox-common.cpp

* Delete gptneox-common.h

* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer

* gptneox-main.cpp : gpt2 bpe tokenizer

* gpt2 bpe tokenizer (handles merges and unicode)

* Makefile : remove gptneox-common

* gguf.py : bytesarray for gpt2bpe tokenizer

* cmpnct_gpt2bpe.hpp : comments

* gguf.py : use custom alignment if present

* gguf : minor stuff

* Update gptneox-main.cpp

* map tensor names

* convert-gptneox-h5-to-gguf.py : map tensor names

* convert-llama-h5-to-gguf.py : map tensor names

* gptneox-main.cpp : map tensor names

* gguf : start implementing libllama in GGUF (WIP)

* gguf : start implementing libllama in GGUF (WIP)

* rm binary commited by mistake

* upd .gitignore

* gguf : calculate n_mult

* gguf :  inference with 7B model working (WIP)

* gguf : rm deprecated function

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : add gguf_get_kv_type

* gguf : add gguf_get_kv_type

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver

* gguf : rm references to old file formats

* gguf : shorter name for member variable

* gguf : rm redundant method

* gguf : get rid of n_mult, read n_ff from file

* Update gguf_tensor_map.py

* Update gptneox-main.cpp

* gguf : rm references to old file magics

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : quantization is working

* gguf : roper closing of file

* gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice

* convert-llama-h5-to-gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : simplify nbytes

* convert-llama-h5-to-gguf.py : simplify nbytes

* gptneox-main.cpp : n_layer --> n_block

* constants.py : n_layer --> n_block

* gguf.py : n_layer --> n_block

* convert-gptneox-h5-to-gguf.py : n_layer --> n_block

* convert-llama-h5-to-gguf.py : n_layer --> n_block

* gptneox-main.cpp : n_layer --> n_block

* Update gguf_tensor_map.py

* convert-gptneox-h5-to-gguf.py : load model in parts to save memory

* convert-llama-h5-to-gguf.py : load model in parts to save memory

* convert : write more metadata for LLaMA

* convert : rm quantization version

* convert-gptneox-h5-to-gguf.py : add file_type key

* gptneox-main.cpp : add file_type key

* fix conflicts

* gguf : add todos and comments

* convert-gptneox-h5-to-gguf.py : tensor name map changes

* Create gguf_namemap.py : tensor name map changes

* Delete gguf_tensor_map.py

* gptneox-main.cpp : tensor name map changes

* convert-llama-h5-to-gguf.py : fixes

* gguf.py : dont add empty strings

* simple : minor style changes

* gguf : use UNIX line ending

* Create convert-llama-7b-pth-to-gguf.py

* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)

* llama : sync gguf-llama.cpp with latest llama.cpp

* minor : indentation + assert

* llama : refactor gguf_buffer and gguf_ctx_buffer

* llama : minor

* gitignore : add gptneox-main

* llama : tokenizer fixes (#2549)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* convert : update convert-new.py with tokenizer fixes (#2614)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* llama : sync gguf-llama with llama (#2613)

* llama : sync gguf-llama with llama

* tests : fix build + warnings (test-tokenizer-1 still fails)

* tests : fix wstring_convert

* convert : fix layer names

* llama : sync gguf-llama.cpp

* convert : update HF converter to new tokenizer voodoo magics

* llama : update tokenizer style

* convert-llama-h5-to-gguf.py : add token types

* constants.py : add token types

* gguf.py : add token types

* convert-llama-7b-pth-to-gguf.py : add token types

* gguf-llama.cpp :  fix n_head_kv

* convert-llama-h5-to-gguf.py : add 70b gqa support

* gguf.py : add tensor data layout

* convert-llama-h5-to-gguf.py : add tensor data layout

* convert-llama-7b-pth-to-gguf.py : add tensor data layout

* gptneox-main.cpp : add tensor data layout

* convert-llama-h5-to-gguf.py : clarify the reverse permute

* llama : refactor model loading code (#2620)

* llama : style formatting + remove helper methods

* llama : fix quantization using gguf tool

* llama : simplify gguf_file_saver

* llama : fix method names

* llama : simplify write_header()

* llama : no need to pass full file loader to the file saver

just gguf_ctx

* llama : gguf_file_saver write I32

* llama : refactor tensor names (#2622)

* gguf: update tensor names searched in quantization

* gguf : define tensor names as constants

* gguf : initial write API (not tested yet)

* gguf : write to file API (not tested)

* gguf : initial write API ready + example

* gguf : fix header write

* gguf : fixes + simplify example + add ggml_nbytes_pad()

* gguf : minor

* llama : replace gguf_file_saver with new gguf write API

* gguf : streaming support when writing files

* gguf : remove oboslete write methods

* gguf : remove obosolete gguf_get_arr_xxx API

* llama : simplify gguf_file_loader

* llama : move hparams and vocab from gguf_file_loader to llama_model_loader

* llama : merge gguf-util.h in llama.cpp

* llama : reorder definitions in .cpp to match .h

* llama : minor simplifications

* llama : refactor llama_model_loader (WIP)

wip : remove ggml_ctx from llama_model_loader

wip : merge gguf_file_loader in llama_model_loader

* llama : fix shape prints

* llama : fix Windows build + fix norm_rms_eps key

* llama : throw error on missing KV paris in model meta data

* llama : improve printing + log meta data

* llama : switch print order of meta data

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>

* gguf : deduplicate (#2629)

* gguf : better type names

* dedup : CPU + Metal is working

* ggml : fix warnings about unused results

* llama.cpp : fix line feed and compiler warning

* llama : fix strncpy warning + note token_to_str does not write null

* llama : restore the original load/save session implementation

Will migrate this to GGUF in the future

* convert-llama-h5-to-gguf.py : support alt ctx param name

* ggml : assert when using ggml_mul with non-F32 src1

* examples : dedup simple

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>

* gguf.py : merge all files in gguf.py

* convert-new.py : pick #2427 for HF 70B support

* examples/gguf : no need to keep q option for quantization any more

* llama.cpp : print actual model size

* llama.cpp : use ggml_elements()

* convert-new.py : output gguf (#2635)

* convert-new.py : output gguf (WIP)

* convert-new.py : add gguf key-value pairs

* llama : add hparams.ctx_train + no longer print ftype

* convert-new.py : minor fixes

* convert-new.py : vocab-only option should work now

* llama : fix tokenizer to use llama_char_to_byte

* tests : add new ggml-vocab-llama.gguf

* convert-new.py : tensor name mapping

* convert-new.py : add map for skipping tensor serialization

* convert-new.py : convert script now works

* gguf.py : pick some of the refactoring from #2644

* convert-new.py : minor fixes

* convert.py : update to support GGUF output

* Revert "ci : disable CI temporary to not waste energy"

This reverts commit 7e82d25f40.

* convert.py : n_head_kv optional and .gguf file extension

* convert.py : better always have n_head_kv and default it to n_head

* llama : sync with recent PRs on master

* editorconfig : ignore models folder

ggml-ci

* ci : update ".bin" to ".gguf" extension

ggml-ci

* llama : fix llama_model_loader memory leak

* gptneox : move as a WIP example

* llama : fix lambda capture

ggml-ci

* ggml : fix bug in gguf_set_kv

ggml-ci

* common.h : .bin --> .gguf

* quantize-stats.cpp : .bin --> .gguf

* convert.py : fix HF tensor permuting / unpacking

ggml-ci

* llama.cpp : typo

* llama : throw error if gguf fails to init from file

ggml-ci

* llama : fix tensor name grepping during quantization

ggml-ci

* gguf.py : write tensors in a single pass (#2644)

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : style fixes in simple conversion script

* gguf : refactor gptneox conversion script

* gguf : rename h5 to hf (for HuggingFace)

* gguf : refactor pth to gguf conversion script

* gguf : rm file_type key and method

* gguf.py : fix vertical alignment

* gguf.py : indentation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* convert-gptneox-hf-to-gguf.py : fixes

* gguf.py : gptneox mapping

* convert-llama-hf-to-gguf.py : fixes

* convert-llama-7b-pth-to-gguf.py : fixes

* ggml.h : reverse GGUF_MAGIC

* gguf.py : reverse GGUF_MAGIC

* test-tokenizer-0.cpp : fix warning

* llama.cpp : print kv general.name

* llama.cpp : get special token kv and linefeed token id

* llama : print number of tensors per type + print arch + style

* tests : update vocab file with new magic

* editorconfig : fix whitespaces

* llama : re-order functions

* llama : remove C++ API + reorganize common source in /common dir

* llama : minor API updates

* llama : avoid hardcoded special tokens

* llama : fix MPI build

ggml-ci

* llama : introduce enum llama_vocab_type + remove hardcoded string constants

* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested

* falcon-main.cpp : falcon inference example

* convert-falcon-hf-to-gguf.py : remove extra kv

* convert-gptneox-hf-to-gguf.py : remove extra kv

* convert-llama-7b-pth-to-gguf.py : remove extra kv

* convert-llama-hf-to-gguf.py : remove extra kv

* gguf.py : fix for falcon 40b

* falcon-main.cpp : fix for falcon 40b

* convert-falcon-hf-to-gguf.py : update ref

* convert-falcon-hf-to-gguf.py : add tensor data layout

* cmpnct_gpt2bpe.hpp : fixes

* falcon-main.cpp : fixes

* gptneox-main.cpp : fixes

* cmpnct_gpt2bpe.hpp : remove non-general stuff

* Update examples/server/README.md

Co-authored-by: slaren <slarengh@gmail.com>

* cmpnct_gpt2bpe.hpp : cleanup

* convert-llama-hf-to-gguf.py : special tokens

* convert-llama-7b-pth-to-gguf.py : special tokens

* convert-permute-debug.py : permute debug print

* convert-permute-debug-master.py : permute debug for master

* convert-permute-debug.py : change permute type of attn_q

* convert.py : 70b model working (change attn_q permute)

* Delete convert-permute-debug-master.py

* Delete convert-permute-debug.py

* convert-llama-hf-to-gguf.py : fix attn_q permute

* gguf.py : fix rope scale kv

* convert-llama-hf-to-gguf.py : rope scale and added tokens

* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens

* llama.cpp : use rope scale kv

* convert-llama-7b-pth-to-gguf.py : rope scale fix

* convert-llama-hf-to-gguf.py : rope scale fix

* py : fix whitespace

* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)

* First pass at converting GGMLv3 LLaMA models to GGUF

* Cleanups, better output during conversion

* Fix vocab space conversion logic

* More vocab conversion fixes

* Add description to converted GGUF files

* Improve help text, expand warning

* Allow specifying name and description for output GGUF

* Allow overriding vocab and hyperparams from original model metadata

* Use correct params override var name

* Fix wrong type size for Q8_K

Better handling of original style metadata

* Set default value for gguf add_tensor raw_shape KW arg

* llama : improve token type support (#2668)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* llama : add API for token type

ggml-ci

* tests : use new tokenizer type API (#2692)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* Improve commentary

* Use token type API in test-tokenizer-1.cpp

* py : cosmetics

* readme : add notice about new file format

ggml-ci

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 23:07:43 +03:00
slaren
097e121e2f
llama : add benchmark example (#2626)
* llama : add benchmark example

* add to examples CMakeLists.txt

* fix msvc build

* add missing include

* add Bessel's correction to stdev calculation

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* improve markdown formatting

* add missing include

* print warning is NDEBUG is not defined

* remove n_prompt and n_gen from the matrix, use each value separately instead

* better checks for non-optimized builds

* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call

* fix json formatting

* add sql output

* add basic cpu and gpu info (linx/cuda only)

* markdown: also show values that differ from the default

* markdown: add build id

* cleanup

* improve formatting

* formatting

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-08-18 12:44:58 +02:00
Kamil Tomšík
348acf188c
llama : add missing enum keyword in function signatures (#2610) 2023-08-14 16:35:16 +03:00
grahameth
ea04a4ca19
add log_callback to llama_context_params for custom logging. (#2234)
* add log_callback to llama_context_params for custom logging.

* Fix macro expansion on gcc

* Add struct llama_state for global variables and move log_callback there

* Turn log level into enum and some minor changes.

* Remove model_for_logging parameter (not needed anymore)

* Convert remaining fprintf(stderr, ...) calls to use new macros.

* Fix enum and initialize g_state

* Fix log calls after merge

* Fix missing static

* Add back all the new lines in the logging strings

* Add comment for llama_log_callback and replace remaining printf calls

---------

Co-authored-by: grahameth <->
Co-authored-by: Helmut <helmut.buhler@inf.h-brs.de>
2023-08-09 22:46:40 +02:00
Johannes Gäßler
0728c5a8b9
CUDA: mmq CLI option, fixed mmq build issues (#2453) 2023-07-31 15:44:35 +02:00
Kawrakow
eb542d3932
Add LLAMA_DEFAULT_RMS_EPS so we can change the default (#2384)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-25 18:35:53 +03:00
slaren
41c674161f
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter

* add rms_norm_eps to command line

* fix baby llama, test-grad0

* use scientific notation for eps param in the help

ggml-ci
2023-07-24 17:57:12 +02:00
Evan Jones
84e09a7d8b
llama : add grammar-based sampling (#1773)
* llama, main : constrain sampling to grammar

* allow loading grammar from file

* fix whitespace errors

* handle & print parser errors

* add comments to grammar syntax and allow newlines where unambiguous

* add missing include

* support alternates in root rule

* fix bugs with empty token and EOS

* adjust JSON grammar

* remove swp file

* rewrite ternary expressions

Co-authored-by: Henri Vasserman <henv@hot.ee>

* use struct for grammar elements and add Unicode support

* add unicode escapes

* add inverse char ranges

* only sample full tokens (no peeking or truncation)

* llama : minor style changes

blindly applied in online editor - hopefully I didn't break something

* update help text

* add warning message if EOS is disabled

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-23 23:58:10 -04:00
Georgi Gerganov
e76d630df1
llama : grouped-query attention + LLaMAv2 70B support (#2276)
* CUDA: GQA implementation

* llama : support for GQA and LLaMAv2 70B

ggml-ci

* py : fix hparams parsing (if-else blocks)

ggml-ci

* py : oh boy ..

ggml-ci

* help : fix gqa value for 70B

ggml-ci

---------

Co-authored-by: JohannesGaessler <johannesg@5d6.de>
2023-07-23 15:09:47 +03:00
Guillaume "Vermeille" Sanchez
ab0e26bdfb
llama : remove cfg smooth factor as it is only a reparameterization of the guidance scale (#2280) 2023-07-21 13:58:36 +03:00
Georgi Gerganov
ae178ab46b
llama : make tensor_split ptr instead of array (#2272) 2023-07-21 13:10:51 +03:00
Rinne
294f424554
llama : extend API to get max devices at runtime (#2253) 2023-07-19 10:06:40 +03:00
Xiao-Yong Jin
6e7cca4047
llama : add custom RoPE (#2054)
* Implement customizable RoPE

The original RoPE has pre-defined parameters

theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]

Our customizable RoPE, ggml_rope_custom_inplace, uses

theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]

with the default matches the original

scale = 1.0
base = 10000

The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.

Recent researches show changing these two parameters extends the context limit with minimal loss.

1. Extending Context to 8K
   kaiokendev
   https://kaiokendev.github.io/til#extending-context-to-8k

2. Extending Context Window of Large Language Models via Positional Interpolation
   Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
   https://arxiv.org/abs/2306.15595

3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
   https://www.reddit.com/user/bloc97
   https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5

* ggml-metal: fix custom rope

* common: fix argument names in help

* llama: increase MEM_REQ_EVAL for MODEL_3B

It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.

* llama: make MEM_REQ_EVAL depend on n_ctx

* server: use proper Content-Type in curl examples

Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded

Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192

With Content-Type: application/json, we can send large json data.

* style : minor fixes, mostly indentations

* ggml : fix asserts

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 13:34:16 +03:00
Bach Le
7513b7b0a1
llama : add functions that work directly on model (#2197)
* Remove vocab reference from context

* Add functions that works directly with model
2023-07-14 21:55:24 +03:00
Bach Le
c9c74b4e3f
llama : add classifier-free guidance (#2135)
* Initial implementation

* Remove debug print

* Restore signature of llama_init_from_gpt_params

* Free guidance context

* Make freeing of guidance_ctx conditional

* Make Classifier-Free Guidance a sampling function

* Correct typo. CFG already means context-free grammar.

* Record sampling time in llama_sample_classifier_free_guidance

* Shift all values by the max value before applying logsoftmax

* Fix styling based on review
2023-07-11 19:18:43 +03:00
Evan Miller
5656d10599
mpi : add support for distributed inference via MPI (#2099)
* MPI support, first cut

* fix warnings, update README

* fixes

* wrap includes

* PR comments

* Update CMakeLists.txt

* Add GH workflow, fix test

* Add info to README

* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)

* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()

* mpi : move all MPI logic into ggml-mpi

Not tested yet

* mpi : various fixes - communication now works but results are wrong

* mpi : fix output tensor after MPI compute (still not working)

* mpi : fix inference

* mpi : minor

* Add OpenMPI to GH action

* [mpi] continue-on-error: true

* mpi : fix after master merge

* [mpi] Link MPI C++ libraries to fix OpenMPI

* tests : fix new llama_backend API

* [mpi] use MPI_INT32_T

* mpi : factor out recv / send in functions and reuse

* mpi : extend API to allow usage with outer backends (e.g. Metal)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-10 18:49:56 +03:00
Tobias Lütke
31cfbb1013
Expose generation timings from server & update completions.js (#2116)
* use javascript generators as much cleaner API

Also add ways to access completion as promise and EventSource

* export llama_timings as struct and expose them in server

* update readme, update baked includes

* llama : uniform variable names + struct init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 16:51:13 -04:00
Howard Su
b8c8dda75f
Use unsigned for random seed (#2006)
* Use unsigned for random seed. Keep -1 as the value to use a time based seed.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-29 06:15:15 -07:00
ningshanwutuobang
cfa0750bc9
llama : support input embeddings directly (#1910)
* add interface for float input

* fixed inpL shape and type

* add examples of input floats

* add test example for embd input

* fixed sampling

* add free for context

* fixed add end condition for generating

* add examples for llava.py

* add READMD for llava.py

* add READMD for llava.py

* add example of PandaGPT

* refactor the interface and fixed the styles

* add cmake build for embd-input

* add cmake build for embd-input

* Add MiniGPT-4 example

* change the order of the args of llama_eval_internal

* fix ci error
2023-06-28 18:53:37 +03:00
zrm
b853d45601
ggml : add NUMA support (#1556)
* detect NUMA systems and pin work threads to nodes (linux)

* disable mmap prefetch/readahead for NUMA systems

* avoid sending finalize op to thread pool if it does nothing

* silence robot

* fix args

* make --numa a param

* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement

* lower synchronization overhead

* statically allocate

* move numa state to g_state

* add description for --numa

* ggml : minor style changes

* ggml : minor style + try fix sanitizer build

* llama : allow to initialize backend with NUMA support

* llama : avoid ggml include in llama-util.h

* ggml : style / formatting

* ggml : fix handling of ops with n_threads > n_tasks > 1

* server : utilize numa parameter

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-26 20:57:59 +03:00
Didzis Gosko
527b6fba1d
llama : make model stateless and context stateful (llama_state) (#1797)
* llama : make model stateless and context stateful

* llama : minor cleanup

* llama : update internal API declaration

* Apply suggestions from code review

fix style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Missing model memory release

* Fix style

* Add deprecated warning for public API function llama_init_from_file

* Update public API use cases: move away from deprecated llama_init_from_file

* Deprecate public API function llama_apply_lora_from_file

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 11:47:58 +03:00
Ettore Di Giacinto
aacdbd4056
llama : fix params struct slignment (#1936)
* Workaround struct misalignment during value-copy

Signed-off-by: mudler <mudler@localai.io>

* Move booleans at the bottom of the structure

Signed-off-by: mudler <mudler@localai.io>

* Add comment

Signed-off-by: mudler <mudler@localai.io>

---------

Signed-off-by: mudler <mudler@localai.io>
2023-06-20 04:24:39 +03:00