* add the parameter : --no-display-prompt , combine with --log-disable it will display only the generated tokens
* remove empty line
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : detect more GPU families
* metal : refactor kernel loading
* metal : set kernel family requirements
* metal : fix kernel init + fix compile options
* metal : take into account simdgroup reduction support
* metal : print only skipped kernels
* metal : fix check for simdgroup reduction support
* metal : check for Metal 3
* metal : free allocations
* metal : normalize encoder:setComputePipelineStatus calls
ggml-ci
* metal : fix Metal3 family check
ggml-ci
* metal : check for simdgroup matrix mul. feature
ggml-ci
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit replaces the magic number used in export-lora.cpp with
the one defined in llama.h, which is indirectly included via common.h.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Updated Models Layout
- Added a models drawer
- Added downloading directly from Hugging Face
- Load custom models from local folder
- Delete models by swiping left
* trimmed trailing white space
* Updated Models Layout
* common : streamline the formatting of help
- Separate alternative parameters by a comma
- Do not indent `--version` differently
* Update common/common.cpp
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Restore intended k-quants quantization mixes for MoE models
* Update Q2_K_S values in the quantize tool
Still using LLaMA-v1 PPL values in the quant description
today does not make much sense. But let's leave this update
for another PR.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq2_xs: basics
* iq2_xs: this should have been in the basics
* iq2_xs: CUDA and scalar CPU works
* iq2_xs: WIP Metal
* iq2_xs: Metal now works
* iq2_xs: working, but dog slow, ARM_NEON dot product
* iq2_xs: better ARM_NEON dot product
We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.
* iq2_xs: AVX2 dot product - 19.5 t/s
* iq2_xs: faster AVX2 dit product
21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.
* iq2_xs: had forgotten to delete iq2-data.h
* Add llama enum for IQ2_XS
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* server: added support for multiple api keys, added loading api keys from file
* minor: fix whitespace
* added file error handling to --api-key-file, changed code to better
reflect current style
* server: update README.md for --api-key-file
---------
Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
* added /health endpoint to the server
* added comments on the additional /health endpoint
* Better handling of server state
When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.
* initialized server_state
* fixed a typo
* starting http server before initializing the model
* Update server.cpp
* Update server.cpp
* fixes
* fixes
* fixes
* made ServerState atomic and turned two-line spaces into one-line
* updated `server` readme to document the `/health` endpoint too
* used LOG_INFO after successful model loading
NULL can be an integer constant expression with the value zero, in this case the behavior would be undefined because of an incorrect type being passed to the variable arguments.
* added /health endpoint to the server
* added comments on the additional /health endpoint
* Better handling of server state
When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.
* initialized server_state
* fixed a typo
* starting http server before initializing the model
* Update server.cpp
* Update server.cpp
* fixes
* fixes
* fixes
* made ServerState atomic and turned two-line spaces into one-line
* updated `server` readme to document the `/health` endpoint too
* added /health endpoint to the server
* added comments on the additional /health endpoint
* Better handling of server state
When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.
* initialized server_state
* fixed a typo
* starting http server before initializing the model
* Update server.cpp
* Update server.cpp
* fixes
* fixes
* fixes
* made ServerState atomic and turned two-line spaces into one-line
This update categorizes models with 24 layers as MODEL_1B, ensuring compatibility with different Phi model variants without impacting existing Phi-2 model functionality.