64 Commits

Author SHA1 Message Date
Borislav Stanimirov
ef0d5e3ec9 build: fix and ignore msvc warnings (ggml/805) 2024-05-11 15:38:34 +03:00
Justine Tunney
3855416027
ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-08 09:30:09 +03:00
slaren
017e6999b5
add basic tensor data validation function (#6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-04-26 18:39:58 +02:00
Georgi Gerganov
54770413c4
ggml : fix MIN / MAX macros (#6904)
ggml-ci
2024-04-25 15:12:28 +03:00
Georgi Gerganov
c0d1b3e03e
ggml : move 32-bit arm compat in ggml-impl.h (#6865)
ggml-ci
2024-04-24 12:00:07 +03:00
Justine Tunney
8cc91dc63c
ggml : add llamafile sgemm (#6414)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.

This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.

On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.

This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
2024-04-16 21:55:30 +03:00
Carolinabanana
5dc9dd7152
llama : add Command R Plus support (#6491)
* Add Command R Plus GGUF

* Add Command R Plus GGUF

* Loading works up to LayerNorm2D

* Export new tensors in 1D so they are not quantized.

* Fix embedding layer based on Noeda's example

* Whitespace

* Add line

* Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda)

* dranger003: Fix block index overflow in CUDA dequantizing.

* Reverted blocked multiplication code as it still has issues and could affect other Llama arches

* export norms as f32

* fix overflow issues during quant and other cleanup

* Type convention

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* dranger003: Fix more int overflow during quant.

---------

Co-authored-by: S <seast@Ss-Mac-Studio.local>
Co-authored-by: S <s@example.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 11:16:13 +03:00
Kawrakow
cbc8343619
Make IQ1_M work for QK_K = 64 (#6327)
* iq1_m: make it work for QK_K = 64 (WIP)

* iq1_m: make it work for QK_K = 64 (scalar and AVX2)

* iq1_m: QK_K = 64 seems to work on Metal and ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-27 08:44:27 +01:00
Kawrakow
55c1b2a3bb
IQ1_M: 1.75 bpw quantization (#6302)
* iq1_m: basics

* iq1_m: basics-2

* iq1_m: CUDA dequantize works

Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.

* iq1_m: separate shifts for each group of 8 in a block

We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105

Not bad, but slightly higher than
  sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
 PPL = 9.14 for LLaMA-v2-7B
 PPL = 6.63 for LLaMA-v2-13B

* iq1_m: go to 3-bit scales

There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.

We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw

* iq1_m: scalar dot product

* iq1_m: AVX2 dot product

* iq1_m: very slightly faster AVX2 dot product

* iq1_m: ARM_NEON dot product

Works, but very slow (10.5 t/s)

* iq1_m: Metal - dequantize works, dot product does not

* iq1_m: Metal now works

About the same performance as iq1_s.

* iq1_m: minor

* iq1_m: checking pure iq1_m quantization

It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.

* iiq1_m: slightly faster ARM_NEON dot product

10.5 t/s -> 11.65 t/s

* iq1_m: faster ARM_NEON dot product

11.65 t/s -> 14.9 t/s

* iq1_m: another minor ARM_NEON dot product improvement

14.9 -> 15.0 t/s

* iq1_m: small PPL improvement via super-block scale adjustment

After quantizing block scales redo the super-block scale fit.

PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B  ) = 8.1624

* iq1_m: adapt to CUDA refactoring

* iq1_m: remove unused variable

We have progressed to warnings being errors.

* iq1_m: add to backend-ops tests

* iq1_m: fix Windows ARM

* iq1_m: use common definition of iq1m_scale_t

* cuda: assert -> NO_DEVICE_CODE

* iq1_M: PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 15:21:27 +01:00
Justine Tunney
7733f0c760
ggml : support AVX512VNNI (#6280)
This change causes some quants (e.g. Q4_0, Q8_0) to go faster on some
architectures (e.g. AMD Zen 4).
2024-03-25 07:39:56 +02:00
Kawrakow
cfd3be76e3
ggml : same IQ4_NL quantization for CPU/CUDA/Metal (#6196)
* Make quantize_row_iq4_nl do the same thing is quantization on CUDA

* Make quantize_row_iq4_nl do the same thing is quantization on CUDA

This time for real. backend-ops tests pass.

* Now fix test-quantize-fns

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-21 14:59:38 +02:00
Georgi Gerganov
8030da7afe
ggml : reuse quantum structs across backends (#5943)
* ggml : reuse quant blocks across backends

ggml-ci

* ggml : define helper constants only for CUDA and SYCL

ggml-ci

* ggml : define helper quantum constants for SYCL

ggml-ci
2024-03-12 14:27:20 +02:00
Georgi Gerganov
184215e783
ggml : fix UB in IQ2_S and IQ3_S (#6012) 2024-03-12 13:49:55 +02:00
Kawrakow
44ca159faf
1.5 bit: we can do even better (#5999)
* iq1_s: we can do even better

Spent one of the 4 scale bits on a signs of a 0.125 shift.
I.e., quants are now -1 + delta, delta, 1 + delta, where delta
is +/- 0.125.

CUDA works, same performance as before.
PPL(LLaMA-v2-7B) is now 11.85!

* iq1_s: make scalar and AVX2 work with the new version

* iq1_s: make Neon work with new version.

~10% drop in performance, so will need some more work.

* iq1_s: make Metal work with new version

* iq1_s: very slightly faster dequantize on Metal

* iq1_s: fix dequantize on the CPU

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-11 17:53:15 +02:00
Michael Podvitskiy
3202361c5b
ggml, ci : Windows ARM runner and build fixes (#5979)
* windows arm ci

* fix `error C2078: too many initializers` with ggml_vld1q_u32 macro for MSVC ARM64

* fix `warning C4146: unary minus operator applied to unsigned type, result still unsigned`

* fix `error C2065: '__fp16': undeclared identifier`
2024-03-11 11:28:51 +02:00
Kawrakow
be858f6205
Better 1.5 bit quantization (#5971)
* Trying blocvks of 16 for IQ1_S - seems slightly better

* iq1s_blocks16: Adjust scale fudge factor to 1.125

* iq1s_blocks16: going to blocks of 32

with 2048 lattice points, so same bpw.
This is even better than blocks of 16.
Should I try blocks of 64? But to keep the same
bpw, when I go to 4096 lattice points, I need to
remove blocks alltogether and just have superblocks of
256 weights.

* iq1s_blocks16: Use 2*<x^2> as sigma2 in weight adjustment

* iq1s_blocks16: scalar and AVX2 dot products

* iq1s_blocks16: CUDA dot product

* iq1s_blocks16: Metal works, Neon does not

Metal works but TG is dog slow (35 t/s). PP is OKish (493 t/s).
Not seeing the bug in the Neon implementation for now.

* iq1s_blocks16: fixed Neon

* iq1s_blocks16: very slightly faster TG on Metal

Still pathetic at 37 t/s

* iq1s_blocks16: speedup Metal by packing codebook into uint32_t's

* Formatting

* iq1s_blocks16: uint32_t codebook is also better in CUDA

TG-128 is now 204 t/s up from 194 t/s.
PP-512 is 5890 t/s, so significantly better than other quants

* iq1s_blocks16: slightly faster Neon dot product

* iq1s_blocks16: faster AVX2 dot product

* iq1s_blocks16: adjust to ggml-common.h

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-11 07:51:49 +01:00
Georgi Gerganov
df4dc3e7cb
ggml : try fix 32-bit arm compat (whisper/1938)
* ggml : try fix 32-bit arm compat

* ggml : fix cont
2024-03-10 20:10:39 +02:00
Georgi Gerganov
8380ecfb21
ggml : fix unnecessary f32 -> f16 -> f32 casts (mmla) (#5951) 2024-03-09 17:36:20 +02:00
Georgi Gerganov
5b09797321
ggml : remove old quantization functions (#5942)
* ggml : remove old quantization functions

ggml-ci

* ggml : simplify ggml_quantize_chunk

ggml-ci

* ggml : restrict correctness

ggml-ci

* ggml : remove hist data from the quantization API

ggml-ci

* tests : remove hist usage in test-backend-ops

ggml-ci

* vulkan : remove hist and fix typo
2024-03-09 15:53:59 +02:00
Georgi Gerganov
8a3012a4ad
ggml : add ggml-common.h to deduplicate shared code (#5940)
* ggml : add ggml-common.h to shared code

ggml-ci

* scripts : update sync scripts

* sycl : reuse quantum tables

ggml-ci

* ggml : minor

* ggml : minor

* sycl : try to fix build
2024-03-09 12:47:57 +02:00
bobqianic
e25fb4b18f
ggml : use uint8x16_t return type for ggml_vqtbl1q_u8 (#5894)
* use uint8x16_t

* Update ggml-quants.c
2024-03-06 09:35:07 +02:00
Jared Van Bortel
bd836944f8
quants : use MM256_SET_M128I consistently to fix gcc 7 build (#5889) 2024-03-05 11:56:37 -05:00
Georgi Gerganov
494c870326
ggml : fix IQ3_S AVX implementation (#5834)
ggml-ci
2024-03-02 20:00:49 +02:00
Kawrakow
bbde6eb256
ggml : IQ3_S improvements (#5829)
* iq3_s: somewhat faster AVX2 dot product

On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.

* iq3_s: somewhat faster ARM_NEON dot product

Still dog slow - 10.7 t/s up from 9.9 t/s.

* iq3_s: another small ARM_NEON improvement

10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.

* iq3_s: minor improvement on Metal

49.4 t/s -> 50.3 t/s

* iq3_s: PPL improvement

E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.

* iq3_s: use new grid everywhere

* Fix ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-02 17:00:51 +02:00
Kawrakow
7c4263d426
ggml : make i-quants work with super-blocks of 64 (CPU,Metal) (#5760)
* WIP: make i-quants work for QK_K = 64

* iq2_xs: attempt to fix AVX dot product for QK_K = 64

Tests pass, but I get gibberish.

* QK_K = 64 tests pass on ARM_NEON and Metal

Sadly, that does not mean it actually works.

* Make CUDA compile with QK_K = 64

Tests don't pass, plus we get misaligned access

* Q2_K: fixed bug in imatrix quantization for QK_K = 64

* iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 10:37:02 +02:00
Kawrakow
cb49e0f8c9
Attempt to fix android build (#5752)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-27 19:16:49 +02:00
Kawrakow
0becb22ac0
IQ4_XS: a 4.25 bpw quantization (#5747)
* Try IQ4_NL with blocks of 64 - does not look good

* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32

* iq4_xs: CUDA works - 133.2 t/s

* iq4_xs: AVX2 dot product

* iq4_xs: ARM_NEON dot product

* iq4_nl: Metal implementation

As usual, Metal / Apple Silicon don't like my quants.

* iq3_xs: minor fix

* iq4_xs: shrink by using IQ3_S for attn_k and attn_q

* iq4_xs: revert using IQ3_S for attn_k and attn_v

PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.

* Fix CI

* iq4_xs: Added forgotten check for 256 divisibility

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-27 16:34:24 +02:00
Engininja2
1f30b7a9f1
ggml-quants : fix avx2 iq1_s vec_dot when compiled with gcc (#5742) 2024-02-27 14:50:18 +02:00
Kawrakow
a33e6a0d2a
Adding IQ2_S and IQ2_M to complete coverage of the 2-3 bit quantization range (#5721)
* Adding IQ2_S and IQ2_M as a single cumulative commit

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-26 18:28:38 +02:00
Radosław Gryta
abbabc5e51
ggml-quants : provide ggml_vqtbl1q_u8 for 64bit compatibility (#5711)
* [ggml-quants] Provide ggml_vqtbl1q_u8 for 64bit compatibility

vqtbl1q_u8 is not part of arm v7 neon library

* [android-example] Remove abi filter after arm v7a fix

* [github-workflows] Do not skip Android armeabi-v7a build
2024-02-25 20:43:00 +02:00
Kawrakow
4c4cb30736
IQ3_S: a much better alternative to Q3_K (#5676)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* Resurrecting iq3_xs

After all the experimentation, nothing was better than this.

* Minor PPL improvement via a block scale fudge factor

* Minor improvement via 3 neighbours

* iq3_xs: working scalar and AVX2 dot products

* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)

* iq3_xs: working Metal implementation

* Adding IQ3_M - IQ3_XS mix with mostly Q4_K

* iiq3_xs: a 3.4375 bpw variant

* iq3_xs: make CUDA work for new version

* iq3_xs: make scalar and AVX2 work for new version

* iq3_s: make ARM_NEON work with new version

* iq3_xs: make new version work on metal

Performance is very similar to Q3_K_S

* iq3_xs: tiny Metal speed improvement

* iq3_xs: tiny Metal speed improvement

* Fix stupid warning

* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS

* iq3_xs: rename to iq3_s

* iq3_s: make tests pass

* Move Q3_K_XS mix to 3.25 bpw

* Attempt to fix failing tests

* Another attempt to fix the Windows builds

* Attempt to fix ROCm

* ROCm again

* iq3_s: partial fix for QK_K = 64

* iq3_s: make it work on metal for QK_K = 64

Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.

* Will this fix ROCm?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 16:23:52 +02:00
Georgi Gerganov
7e4f339c40
ggml : always define ggml_fp16_t as uint16_t (#5666)
* ggml : always define ggml_fp16_t as uint16_t

ggml-ci

* ggml : cont

ggml-ci

* ggml : cont

* ggml : cont

ggml-ci

* ggml : cont

ggml-ci

* cuda : no longer ggml headers last

ggml-ci

* ggml : fix q6_K FP16 -> FP32 conversion

ggml-ci

* ggml : more FP16 -> FP32 conversion fixes

ggml-ci
2024-02-22 23:21:39 +02:00
Georgi Gerganov
efd56b1c21
ggml : 32-bit arm compat (whisper/1891)
* ggml : 32-bit arm compat

* ggml : add ggml_vqtbl1q_s8 impl

* ggml : cont
2024-02-22 23:20:50 +02:00
Kawrakow
a14679cc30
IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* iq4_nl: Fix after merging with master

* iq4_nl: another fix after merging with master

* Use IQ4_NL instead of Q4_K when using k-quants is not possible

* Fix typo that makes several tests fail

* It was the ggml_vdotq thing missed inside the brackets

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-21 11:39:52 +02:00
Georgi Gerganov
14278f55d2
ggml : restore vec dot stride arg names (#5453) 2024-02-18 22:58:57 +02:00
Georgi Gerganov
b1de96824b
ci : fix wikitext url + compile warnings (#5569)
ggml-ci
2024-02-18 22:39:30 +02:00
Kawrakow
bd2d4e393b
1.5 bit quantization (#5453)
* iq1_s: WIP basics

* iq1_s: CUDA is working

* iq1_s: scalar CPU dot product

* iq1_s: WIP AVX2 dot product - something is not right

* Fix tests

* Fix shadow warnings

* Fix after merge with latest master

* iq1_s: AVX2 finally works

* iq1_s: ARM_NEON dot product. Works, but not very fast

* iq1_s: better grid

* iq1_s: use IQ2_XXS for attn_output

At a cost of 0.04 extra bpw this gives a big improvement in PPL.

* iq1_s: Metal basics

Dequantize works, but not dot product

* iq1_s: Metal works, but quite slow

As usual, Apple Silicon does not like the code I write.

* iq1_s: Tests

* iq1_s: slightly faster dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-18 18:16:55 +02:00
Kawrakow
895407f31b
ggml-quants : fix compiler warnings (shadow variable) (#5472)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-13 09:07:57 +02:00
Georgi Gerganov
0f2411f154
ggml : fix compile warnings (unused vars) (#4966) 2024-02-11 15:33:01 +02:00
snadampal
a07d0fee1f
ggml : add mmla kernels for quantized GEMM (#4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-11 15:22:33 +02:00
Michael Podvitskiy
b2f87cb64d
ggml : fix error C2078: too many initializers for MSVC ARM64 (#5404) 2024-02-09 11:56:43 +02:00
Kawrakow
f57fadc009
Slight quantization improvement for Q4_K and Q5_K (#5361)
* Q4_K: slightly better quantization

* Q5_K: slightly better quantization

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-06 17:28:02 +02:00
Kawrakow
6fdfa2ecc6
iq2_xxs: tune quantization (#5320)
We get slightly better PPL, and we cut quantization time in
nearly half.

The trick is to 1st quantize without forcing points onto the E8-lattice.
We can then use a narrower search range around the block scale that we
got that way.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 10:46:06 +02:00
Kawrakow
8e14e3ddb3
Faster AVX2 dot product for IQ2_XS (#5187)
* iq2xs: faster AVX2 dot product

* iq2xs: small AVX2 imrovement

* Speed up computing sign bits in AVX2 iq2_xs dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Peter Reid <peter@peterreid.net>
2024-01-30 15:15:07 +02:00
Kawrakow
f4d7e54974
SOTA 3-bit quants (#5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 15:14:12 +02:00
Georgi Gerganov
38566680cd
ggml : add IQ2 to test-backend-ops + refactoring (#4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 18:54:56 +02:00
Kawrakow
334a835a1c
ggml : importance matrix support for legacy quants (#4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-16 19:51:26 +02:00
Kawrakow
467a882fd2
Add ability to use importance matrix for all k-quants (#4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 16:21:12 +02:00
Kawrakow
147b17ac94
2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
Georgi Gerganov
f238461236
ggml : fix 32-bit ARM compat for IQ2_XS (whisper/1758)
* ggml : fix 32-bit ARM compat

* ggml : fix fix

* ggml : fix fix fix
2024-01-12 22:02:11 +02:00