* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverted Makefile
* Fixed include
* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables
* removed trailing whitespace
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverting Makefile
* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet
* Removing MIRROR_MODE code for this PR
* Removing last bit of MIRROR_MODE code for this PR
* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static
* Fixed lingering init_llama_backend() bool calls in tests and examples
* Remote enum llama_numa_strategies
* Revert bad merge with dynatemp flags
* add missing enum ggml_numa_strategies declaration and revert sync problem with master
* add missing enum ggml_numa_strategies declaration
* fixed ggml_init_numa variable
* Update ggml.h
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges
* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples
* Fix up some boolean vs enum comparisons
* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype
* Update ggml.h
Align enum values
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
Remove whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
align paremeters
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/server.cpp
remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/common.cpp
Remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example
* Update ggml.c
simplified return for platforms without NUMA support
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* removed redundant else from cli argument processing of --numa
* whitespace
---------
Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* kl-divergence: be able to save all logits to a file
* Add ability to compute KL-divergence
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* TruthfulQA: 1st attempt, does not look like it is working
The same implementation can be used for HellaSwag as well,
so I converted a HellaSwag validation dataset to the binary
format used here and tested with that. The score is only
around 50, so something is not quite right.
* TruthfulQA: works but the result is bad
I know it works because if I convert the HellaSwag validation
data to the binary format used in the truthful_qa_score() function
I get the exact same result as from the hellaswag_score() function.
But I guess, the questions are tricky and the way I have done
the combination of question + answer is very likely not the best.
The TruthfulQA validation dataset contains 817 questions, with
random chance result around 19%. With this version I get
29.1% for Mistral-7B and 55.2% for Mistral-7B-Instruct-v0.2.
The HF leader board results for these two models are
42.2% and 68.3%, respectively.
* TruthfulQA: fix random sample
* TruthfulQA: prepare tasks in parallel for large test datasets
* Rename truthful_qa to multiple_choice
* Make MSVC happy
I had forgotten that MSVC does not make constexpr's available
inside a lambda.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
For Mistral-7B and fp16, time on my system goes down from 536 seconds
to 423 seconds for the full evaluation dataset (10042 tasks).
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* winogrande: simple implementation
It doesn't look like it is working - why?
For Mistral-7B it is barely better than
random chance (score ~60% for 1267 tasks), while I see
Mistral-7B scoring 78.4% on the HF leader board.
1-sigma statistical uncertainty for 1267 tasks is ~1.4,
so no way the difference is due to statistics.
* winogrande: somewhat better
Score for Mistrali7-B is now 68.9 on the validation set of
winogrande_debiased. Still far from the reported 78.4, but
better than what I had before.
* winogrande: improving
Mistral-7B score is now 73.56.
Still not quite 78.4 but getting there.
We are also getting a lower score on HellaSwag
compared to HF leader board, so I'm not expecting
we will get up to 78.4 anyway.
It looks like it is better to skip the choice word(s)
when evaluating the average log-likelihood. This kind of
makes sense because a more common word (in Winogrande this is
often a name) will have a higher probability without knowing
about the follow up context, and this will skew the log-likelihood
towards the more common word. We can only do this if the
choice words are not last in the sentence.
It also looks like it is better to skip the punctuation at the
end of the sentence, provided the choice words are not last.
* winogrande: add dataset instructions
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode.
* Respect add_bos_token GGUF metadata value
* gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time
* cmake : fix build when .git does not exist
* cmake : simplify BUILD_INFO target
* cmake : add missing dependencies on BUILD_INFO
* build : link against build info instead of compiling against it
* zig : make build info a .cpp source instead of a header
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* cmake : revert change to CMP0115
---------
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* Extend llama_kv_cache_seq_rm to allow matichng any sequence
* Replace llama_kv_cache_tokens_rm with llama_kv_cache_clear
Use llama_kv_cache_clear for cache clearing
Change calls to llama_kv_cache_tokens_rm that want to delete by position to use llama_kv_cache_seq_rm functionality
* added `llama_model_token_*` variants to all the `llama_token_*` functions.
* added `LLAMA_API`
* formatting
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* removed old `llama_token` functions
* changed 3 more functions to take in model
- `llama_token_get_text`
- `llama_token_get_score`
- `llama_token_get_type`
* added back docs
* fixed main.cpp
* changed token functions to use new model variants
* changed token functions to use new model variants
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used
* build : on Mac OS enable Metal by default
* make : try to fix build on Linux
* make : move targets back to the top
* make : fix target clean
* llama : enable GPU inference by default with Metal
* llama : fix vocab_only logic when GPU is enabled
* common : better `n_gpu_layers` assignment
* readme : update Metal instructions
* make : fix merge conflict remnants
* gitignore : metal
* Speedup tokenization
On current master it takes ~3.2 seconds to tokenize
Wikitext. With this change it becomes ~525 ms.
* Fixit: it was missing the piece after the last found occurence
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* tests : write a Python tokenizer test (wip)
* llama : prefix input text for tokenization with whitespace
* llama : distinguish pieces from decoded text + fix detokenization
* common : add comments
* examples : no longer manually add leading space when tokenizing
* tests : use Python to generate tokenizer tests for C++
* tests : add option to tokenize text files
ggml-ci
* tests : add test-tokenizer-1.py
* llama.cpp : fix LF token
* hellaswag : move the concat space for clarity
* tests : add falcon tests (py + cpp, currently do not pass Unicode)
ggml-ci
* common : temporary separate llama_detokenize calls for SPM and BPE
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* Implementing strided computation of perplexity
* Alternative way to output PPL results
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ci : run ctest
ggml-ci
* ci : add open llama 3B-v2 tests
ggml-ci
* ci : disable wget progress output
ggml-ci
* ci : add open llama 3B-v2 tg tests for q4 and q5 quantizations
ggml-ci
* tests : try to fix tail free sampling test
ggml-ci
* ci : add K-quants
ggml-ci
* ci : add short perplexity tests
ggml-ci
* ci : add README.md
* ppl : add --chunks argument to limit max number of chunks
ggml-ci
* ci : update README
* MPI support, first cut
* fix warnings, update README
* fixes
* wrap includes
* PR comments
* Update CMakeLists.txt
* Add GH workflow, fix test
* Add info to README
* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)
* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()
* mpi : move all MPI logic into ggml-mpi
Not tested yet
* mpi : various fixes - communication now works but results are wrong
* mpi : fix output tensor after MPI compute (still not working)
* mpi : fix inference
* mpi : minor
* Add OpenMPI to GH action
* [mpi] continue-on-error: true
* mpi : fix after master merge
* [mpi] Link MPI C++ libraries to fix OpenMPI
* tests : fix new llama_backend API
* [mpi] use MPI_INT32_T
* mpi : factor out recv / send in functions and reuse
* mpi : extend API to allow usage with outer backends (e.g. Metal)
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>