* sampling : refactor + optimize penalties sampler
ggml-ci
* common : apply ignore_eos as logit bias
ggml-ci
* batched : remove penalties sampler
* params : allow penalty_last_n == -1 to be equal to context size
ggml-ci
* common : by default, move the penalties at the end of the sampling chain
ggml-ci
* common : ignore all EOG tokens
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* common : move back the penalties at the front of the sampling chain
ggml-ci
* readme : restore hint about --ignore-eos flag [no ci]
* llama : minor
ggml-ci
* webui : update
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Add deepseek v1 arch & gigachat template
* improve template code
* add readme
* delete comments
* remove comment
* fix format
* lint llama.cpp
* fix order of deepseek and deepseek2, move gigachat temlate to the end of func
* fix order of deepseek and deepseek2 in constants; mark shared exp as deepseek arch need
* remove comments
* move deepseek above deepseek2
* change placement of gigachat chat template
* rename ggml-cpu-aarch64.c to .cpp
* reformat extra cpu backend.
- clean Q4_0_N_M and IQ4_0_N_M
- remove from "file" tensor type
- allow only with dynamic repack
- extract cpu extra bufts and convert to C++
- hbm
- "aarch64"
- more generic use of extra buffer
- generalise extra_supports_op
- new API for "cpu-accel":
- amx
- aarch64
* clang-format
* Clean Q4_0_N_M ref
Enable restrict on C++
* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack
* added/corrected control on tensor size for Q4 repacking.
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add debug logs on repacks.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : add enum for supported chat templates
* use "built-in" instead of "supported"
* arg: print list of built-in templates
* fix test
* update server README
* Templates: `mistral-v1`, `mistral-v2`, `mistral-v3`, `mistral-v3-tekken`
* Changed system message logic and added tests for all 4
* Invalid `system_message` instead of `content` fixed
* Removed tab-indented lines
* Added template code and test for `mistral-v7`
* Added all tests. Fixed bug with `tmpl == "llama2"` test.
* Replaced tabs with spaces.
* Removed `'mistral-v2'` option as no (open) models ever used it
* Removed all references to 'v2' template from comments
* Update llama.cpp
Fixed `trim_assistant_message` bug
* llama : accept a list of devices to use to offload a model
* accept `--dev none` to completely disable offloading
* fix dev list with dl backends
* rename env parameter to LLAMA_ARG_DEVICE for consistency
* Add OLMo November 2024 constants
* Add OLMo November 2024 converter
* Add loading of OLMo November 2024 tensors and hyper parameters
* Add building of OLMo November 2024 model
* llama: propagating the results of `graph_compute` to the user interface
* llama: reverting kv_cache in case of failed compute
* llama: `llama_kv_cache_state` was removed, only the result of `llama_graph_compute` is returned
* llama: restore a kv_cache in case of failed computation
* llama: correct reverting of the entire batch.
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models
* llama: updated comments
* llama : add comments about KV cache state after error
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* rwkv6: rename to wkv6
* rwkv6: support avx2 avx512 armv8 armv9
* rwkv6: update cuda file name
* rwkv6: rename params
* wkv on sycl
* sycl: add some ops
* sycl: Enhance OP support judgment
* wkv6: drop armv9 and tranfer to GGML style
ggml-ci
* sync : ggml
* update the function to use appropriate types
* fix define error
* Update ggml/src/ggml-cpu.c
* add appropriate asserts
* move element-wise functions outside
* put the declaration outside the loop
* rewrite to be more inline with the common pattern for distributing threads
* use recommended way GGML_TENSOR_LOCALS
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Plamen Minev <pacominev@gmail.com>
Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
* llama : fix buffer checks for mamba and rwk
* llama : fix missing worst case flag during reserve
* cuda : fix supports_op for norm
* disable sched SET_CAUSE
* Add granite template to llama.cpp
* Add granite template to test-chat-template.cpp
* Update src/llama.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Update tests/test-chat-template.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Added proper template and expected output
* Small change to \n
Small change to \n
* Add code space &
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Fix spacing
* Apply suggestions from code review
* Update src/llama.cpp
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
This commit renames the member field batch in llm_build_context to
ubatch, and also the parameter batch in llama_build_graph, and
llama_set_inputs to ubatch.
The motivation for this change is to make the code more readable
(considering there are the structs llama_batch and llama_sbatch), and
consistent with other parts of the code base where parameters/fields of
type llama_ubatch are named ubatch.
* [CANN] Adapt to dynamically loadable backends mechanism
* Fix the Bug: inference running result is garbled in debug running model for LM models who's type is Q4_0 class
* Handle the review comments of this pull request
* llama : deprecate softmax sampler + fix dist sampler
ggml-ci
* tests : replace macros with functions
ggml-ci
* sampling : change temperature sampler logic
For t <= 0.0f, keep the max logit intact and set the rest to -inf
* cont : no need for special "greedy" logic
top-k == 1 is the same
* tests : init prob correctly
* llama : handle temp <= 0.0 in the temp_ext sampler too
ggml-ci
* cont : avoid extra loop in temperature sampler for sub-zero temp
ggml-ci
add intel amx isa detection
add vnni kernel for gemv cases
add vnni and amx kernel support for block_q8_0
code cleanup
fix packing B issue
enable openmp
fine tune amx kernel
switch to aten parallel pattern
add error message for nested parallelism
code cleanup
add f16 support in ggml-amx
add amx kernels for QK_K quant formats: Q4_K, Q5_K, Q6_K and IQ4_XS
update CMakeList
update README
fix some compilation warning
fix compiler warning when amx is not enabled
minor change
ggml-ci
move ggml_amx_init from ggml.c to ggml-amx/mmq.cpp
ggml-ci
update CMakeLists with -mamx-tile, -mamx-int8 and -mamx-bf16
ggml-ci
add amx as an ggml-backend
update header file, the old path for immintrin.h has changed to ggml-cpu-impl.h
minor change
update CMakeLists.txt
minor change
apply weight prepacking in set_tensor method in ggml-backend
fix compile error
ggml-ci
minor change
ggml-ci
update CMakeLists.txt
ggml-ci
add march dependency
minor change
ggml-ci
change ggml_backend_buffer_is_host to return false for amx backend
ggml-ci
fix supports_op
use device reg for AMX backend
ggml-ci
minor change
ggml-ci
minor change
fix rebase
set .buffer_from_host_ptr to be false for AMX backend
* llama : suppress conversion from 'size_t' to 'int'
This commit updates llm_tokenizer_spm.tokenize to suppress/remove the
following warnings that are generated on Windows when using MSVC:
```console
src\llama-vocab.cpp(211,1): warning C4267: 'argument':
conversion from 'size_t' to 'int', possible loss of data
src\llama-vocab.cpp(517,1): warning C4267: 'argument':
conversion from 'size_t' to 'int', possible loss of data
```
This is done by adding a cast for the size_t returned from
symbols.size(). I believe this is safe as it seems unlikely that
symbols, which stores an entry for each UTF8 character, would become
larger than INT_MAX.
The motivation for this change is to reduce the number of warnings that
are currently generated when building on Windows.
* squash! llama : suppress conversion from 'size_t' to 'int'
Move cast into for loop.
* Initial XTC commit
Adds XTC sampler, not activated by default, but recommended settings by default.
* Cleanup
* Simplified chances calculation
To be more inline with the original implementation, chance is calculated once at the beginning.
* First fixes by comments
Still need to look into sorting
* Fixed trailing backspaces
* Fixed RNG to be reproduceable
Thanks to @slaren for directions
* Fixed forgotten header
* Moved `min_keep`
Moved from conditions to a simple check at the end.
* Fixed broken randomization
Thanks to @slaren for explanation
* Swapped sorting for a custom algorithm
Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.
* Algorithm rework
1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.
* Added XTC to `test-sampling`
* Simplified algorithm and more tests
* Updated info in common and args
* Merged back lost commits in common and arg
* Update dump info in common
* Fixed incorrect min_keep check
* Added XTC to README
* Renamed parameters, fixed info and defaults
* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off
* Initial server support
* Added XTC to server UIs
* Fixed labels in old server UI
* Made algorithm safer and more readable
* Removed xtc_threshold_max
* Fixed arg after update
* Quick fixes by comments
* Simplified algorithm since threshold_max is removed
* Renamed random distribution
* Fixed tests and outdated README
* Small fixes
* server : accept extra_context for the infill endpoint
ggml-ci
* server : update readme [no ci]
* server : use repo-level FIM pattern if possible
ggml-ci
* llama : improve infill support
ggml-ci
* llama : add more FIM token strings
ggml-ci
* server : update prompt on slot restore (#9800)
* gguf : deprecate old FIM token KVs
* ggml : do not use BLAS with types without to_float
* ggml : return pointer from ggml_internal_get_type_traits to avoid unnecessary copies
* ggml : rename ggml_internal_get_type_traits -> ggml_get_type_traits
it's not really internal if everybody uses it
* ggml : add metal backend registry / device
ggml-ci
* metal : fix names [no ci]
* metal : global registry and device instances
ggml-ci
* cont : alternative initialization of global objects
ggml-ci
* llama : adapt to backend changes
ggml-ci
* fixes
* metal : fix indent
* metal : fix build when MTLGPUFamilyApple3 is not available
ggml-ci
* fix merge
* metal : avoid unnecessary singleton accesses
ggml-ci
* metal : minor fix [no ci]
* metal : g_state -> g_ggml_ctx_dev_main [no ci]
* metal : avoid reference of device context in the backend context
ggml-ci
* metal : minor [no ci]
* metal : fix maxTransferRate check
* metal : remove transfer rate stuff
---------
Co-authored-by: slaren <slarengh@gmail.com>
* rerank : use [SEP] token instead of [BOS]
ggml-ci
* common : sanity check for non-NULL tokens
ggml-ci
* ci : adjust rank score interval
ggml-ci
* ci : add shebang to run.sh
ggml-ci
* Add scaffolding for ggml logging macros
* Metal backend now uses GGML logging
* Cuda backend now uses GGML logging
* Cann backend now uses GGML logging
* Add enum tag to parameters
* Use C memory allocation funcs
* Fix compile error
* Use GGML_LOG instead of GGML_PRINT
* Rename llama_state to llama_logger_state
* Prevent null format string
* Fix whitespace
* Remove log callbacks from ggml backends
* Remove cuda log statement
* feat(gguf-py): Add granitemoe architecture
This includes the addition of new tensor names for the new moe layers.
These may not be correct at this point due to the need for the hack in
gguf_writer.py to double-check the length of the shape for these layers.
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(convert_hf_to_gguf): Add GraniteMoeModel
GraniteMoe has the same configuration deltas as Granite
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(granitemoe convert): Split the double-sized input layer into gate and up
After a lot of staring and squinting, it's clear that the standard mixtral
expert implementation is equivalent to the vectorized parallel experts in
granite. The difference is that in granite, the w1 and w3 are concatenated
into a single tensor "input_linear." Rather than reimplementing all of the
math on the llama.cpp side, the much simpler route is to just split this
tensor during conversion and follow the standard mixtral route.
Branch: GraniteMoE
Co-Authored-By: alex.brooks@ibm.com
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(granitemoe): Implement granitemoe
GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Typo fix in docstring
Co-Authored-By: ggerganov@gmail.com
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(conversion): Simplify tensor name mapping in conversion
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert): Remove unused tensor name mappings
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert): Sanity check on merged FFN tensor sizes
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Allow "output" layer in granite moe architecture (convert and cpp)
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(granite): Add missing 'output' tensor for Granite
This is a fix for the previous `granite` architecture PR. Recent snapshots
have included this (`lm_head.weights`) as part of the architecture
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit updates the llama_sampler_sample function to use reserve and
emplace_back for the vector of llama_token_data structs.
The motivation for this change is to avoid the creation of n_vocab
default-constructed llama_token_data structs which are then
immediately overwritten.
* llama: fixed n_vocab for `no_vocab` models
* llama: updated error output for `llama_decode_internal` and `llama_encode_internal`
* llama: log warning if there's no vocab_size in metadata
* llama: correct vocab size for logging
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* feat(gguf-py): Add Granite model and params to gguf-py
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(convert_hf_to_gguf): Add registration and param setup for Granite
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Add config parsing for Granite multiplier params
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): First pass at full port of granite deviations from llama
Something is still not working right since the results are mostly terrible,
but on occasion it's producing relevant results at this point, so
_something_ is working.
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama.cpp): Determine granite language 3b instruct by vocab size
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel
The defaults in LlamaModel are needed for Granite as well
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama.cpp): Switch Granite param names to use _scale for consistency
Other scalar multipliers are called *_scale, so this provides a more
consistent naming convention.
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale
The transformers names with _multiplier will now be converted to the _scale
equivalent during conversion.
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit renames n_embed to n_embd in llm_build_rwkv6_time_mix.
The motivation for this change is consistency with the other rwkv6
functions like build_rwkv6 (and other parts of the code base).
This commit makes the cell_id variable const in the inp_s_mask block.
The motivation for this change is consistency with the code in the
inp_s_copy block.
* llama : llama_perf + option to disable timings during decode
ggml-ci
* common : add llama_arg
* Update src/llama.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* perf : separate functions in the API
ggml-ci
* perf : safer pointer handling + naming update
ggml-ci
* minor : better local var name
* perf : abort on invalid sampler pointer
ggml-ci
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>