* k_cache: be able to use Q5_0
* k_cache: be able to use Q5_1 on CODA
* k_cache: be able to use Q5_0 on Metal
* k_cache: be able to use Q5_1 on Metal
* k_cache: be able to use IQ4_NL - just CUDA for now
* k_cache: be able to use IQ4_NL on Metal
* k_cache: add newly added supported types to llama-bench and CUDA supports_op
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* backend : offload large batches to GPU
* fix hip
* code cleanup
* fix CUDA split buffers
* Update ggml-backend-impl.h
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix memset without set_device
* imatrix : remove sched affix from weight names
* sched : add a new split if the current one has too many inputs
reduce max inputs per split
more cleanup
* update backends
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
There several places where a gguf context is allocated. A call to gguf_free
is missing in some error paths. Also on linux, llama-bench was missing a
fclose.
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs
ggml-ci
* server : add -ub, --ubatch-size parameter
* fix server embedding test
* llama : fix Mamba inference for pipeline parallelism
Tested to work correctly with both `main` and `parallel` examples.
* llama : limit max batch size to n_batch
* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)
changing this value may improve performance for some systems, but increases memory usage
* fix hip build
* fix sycl build (disable cpy_tensor_async)
* fix hip build
* llama : limit n_batch and n_ubatch to n_ctx during context creation
* llama : fix norm backend
* batched-bench : sync after decode
* swiftui : sync after decode
* ggml : allow ggml_get_rows to use multiple threads if they are available
* check n_ubatch >= n_tokens with non-casual attention
* llama : do not limit n_batch to n_ctx with non-casual attn
* server : construct batch with size of llama_n_batch
* ggml_backend_cpu_graph_compute : fix return value when alloc fails
* llama : better n_batch and n_ubatch comment
* fix merge
* small fix
* reduce default n_batch to 2048
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* suport multiple cards: split-mode - layer|row
* rm warning
* rebase with master, support tow new OPs, close feature for -sm=row, fix for unit test
* update news
* fix merge error
* update according to review comments
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverted Makefile
* Fixed include
* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables
* removed trailing whitespace
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverting Makefile
* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet
* Removing MIRROR_MODE code for this PR
* Removing last bit of MIRROR_MODE code for this PR
* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static
* Fixed lingering init_llama_backend() bool calls in tests and examples
* Remote enum llama_numa_strategies
* Revert bad merge with dynatemp flags
* add missing enum ggml_numa_strategies declaration and revert sync problem with master
* add missing enum ggml_numa_strategies declaration
* fixed ggml_init_numa variable
* Update ggml.h
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges
* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples
* Fix up some boolean vs enum comparisons
* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype
* Update ggml.h
Align enum values
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
Remove whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
align paremeters
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/server.cpp
remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/common.cpp
Remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example
* Update ggml.c
simplified return for platforms without NUMA support
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* removed redundant else from cli argument processing of --numa
* whitespace
---------
Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
* add --no-mmap, show sycl backend
* fix conflict
* fix code format, change print for --no-mmap
* ren no_mmap to mmap, show mmap when not default value in printer
* update guide for mmap
* mv position to reduce model reload
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cmake : fix build when .git does not exist
* cmake : simplify BUILD_INFO target
* cmake : add missing dependencies on BUILD_INFO
* build : link against build info instead of compiling against it
* zig : make build info a .cpp source instead of a header
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* cmake : revert change to CMP0115
---------
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* Extend llama_kv_cache_seq_rm to allow matichng any sequence
* Replace llama_kv_cache_tokens_rm with llama_kv_cache_clear
Use llama_kv_cache_clear for cache clearing
Change calls to llama_kv_cache_tokens_rm that want to delete by position to use llama_kv_cache_seq_rm functionality
* added `llama_model_token_*` variants to all the `llama_token_*` functions.
* added `LLAMA_API`
* formatting
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* removed old `llama_token` functions
* changed 3 more functions to take in model
- `llama_token_get_text`
- `llama_token_get_score`
- `llama_token_get_type`
* added back docs
* fixed main.cpp
* changed token functions to use new model variants
* changed token functions to use new model variants
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used
* use hipblas based on cublas
* Update Makefile for the Cuda kernels
* Expand arch list and make it overrideable
* Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5)
* add hipBLAS to README
* new build arg LLAMA_CUDA_MMQ_Y
* fix half2 decomposition
* Add intrinsics polyfills for AMD
* AMD assembly optimized __dp4a
* Allow overriding CC_TURING
* use "ROCm" instead of "CUDA"
* ignore all build dirs
* Add Dockerfiles
* fix llama-bench
* fix -nommq help for non CUDA/HIP
---------
Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com>
Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com>
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Co-authored-by: jammm <2500920+jammm@users.noreply.github.com>
Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
* llama : add benchmark example
* add to examples CMakeLists.txt
* fix msvc build
* add missing include
* add Bessel's correction to stdev calculation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* improve markdown formatting
* add missing include
* print warning is NDEBUG is not defined
* remove n_prompt and n_gen from the matrix, use each value separately instead
* better checks for non-optimized builds
* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call
* fix json formatting
* add sql output
* add basic cpu and gpu info (linx/cuda only)
* markdown: also show values that differ from the default
* markdown: add build id
* cleanup
* improve formatting
* formatting
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>