* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add API functions to access llama model tensors
* add stub example for finetuning, based on train-text-from-scratch
* move and remove code
* add API functions to access remaining model parameters:
mult, head and rot
* first draft for LORA finetune training
* remove const model and layer arguments in API functions for accessing model tensors
* bug fixes to make finetune compile
automatic allocator does not work yet
* add debug prints for training memory improvements
* fix names of lora tensors
* avoid stack overflow resulting from big ggml_cgraph
replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand
* replace llama API functions to get model tensors by one function to get model tensor by name
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
* remove unused call to not existing llama_get_layer_from_model
* implement ggml_compute_forward_out_prod_q_f32
* remove trailing whitespace
* add lora finetune support on quantized base model tensors
* add ggml_add_cast API function
this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.
* use ggml_add_cast in finetuning
lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models
* bug fix: actually use result type passed to ggml_add_cast
* make sure base model tensors data cannot be used in viewable operations
memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations
* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors
* avoid keeping in memory ALL of the gradients
The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.
During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.
To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.
* remove trailing whitespace
* remove debug prints and function to compute tensor data hash
* improve optimization iteration prints
* adjust maximal values to support finetuning 3B models
* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4
* bug fix: make sure finetune input gradient is allocated at begin and kept until end
* remove unnecessary src tensor from ggml_get_rows_back
we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.
* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back
we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included
* resolve todo
allocator will only make it inplace when they are of the same type
* mixing multiple LORA adapters is now possible
pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.
* add option to save finetune output every N iterations
* also save latest finetune output with ITERATION="LATEST" and print where files are saved
saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"
* update checkpoint train stats before saving via "--save-every"
* add command line option `--rank-wo N` for rank of wo tensor
* update finetune README
* fix dump_non_result_info_yaml to output multiple lora adapters
* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)
* replace llama_n_mult by llama_n_ff
* finetune bug fixes to compile with merged in code from master
* remove prediction related code to reduce duplicated code with main
use main instead
* reduce large memory overhead in train-text-from-scratch
all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.
* add comment explaining why finetune checkpoints are allocated in one block
* make default value of float member a float literal
* handle rms_norm and rope parameters the same as in train-text-from-scratch
* remove unused code
* remove vocab related code as it is unnecessary
* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints
so that they can be differentiated from lora finetune checkpoints
* add gguf constants and load/save functions from train-text-from-scratch
* add load & save lora finetune checkpoints via gguf
* add python script to convert old finetune checkpoint files to gguf
* remove old checkpoint save & load code
* remove code to print data checksums which was used to verify correctness of new gguf code
* omit tokenization when training is disabled, only save llama lora adapter
training can be disabled by passing '-n 0' to finetune
* remove trailing whitespace
* update README.md
* implement ggml_compute_forward_repeat_f16
* avoid stack overflow of large cgraphs in test-grad0
* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32
ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.
this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore
* increase test-grad0 context mem size to accommodate for bigger cgraph
* add sanity check to ggml_compute_backward, asserting the correct shape of gradients
* fix ggml_acc_or_set to return tensor of correct shape
* remove unused 'inplace' argument from ggml_compute_backward function
inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations
* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations
* fix error message in ggml_allocr_alloc to display actual max_avail
* fix check_gradient
ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing
* use tensor->view_src instead of ggml_is_view and get_view_source
* move gradient checkpointing code into ggml, new API function:
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints);
* replace custom data getters and setters by ggml functions
* train-text-from-scratch can train (full finetune) gguf models
just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.
tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.
* remove trailing whitespace
* add option to save train-text-from-scratch output every N iterations
* update README.md
* fix warnings
* fix warnings
* remove finetune option to disable allocator
the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation
* add tensor checkpoints only when gradient checkpointing is enabled
* initialize opt ggml context if none was provided
* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc
GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);
* finetune: automatically allocate all memory and changes to command line options
remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.
* add finetune to Makefile
* update README.md
* print time per iteration and estimate remaining time
* increase measured alloc size by tensor_alignment
ggml_allocr_reset will reduce the given size by up to tensor_alignment-1
* fix README.md
* add some more allocator debug prints
* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue
* revert last commit
"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"
"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."
This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.
* remove unnecessary "0x" before "%p" output
* move measurement memory segment to upper region of the address space
* update README.md
* fix printf format warnings
* add missing gguf_free in load_checkpoint_lora_file
* load default rms_norm and rope parameters from base model
* add gradient accumulation
specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.
* fix tracking of train_samples and train_tokens
* build : fix compile warnings
* ggml : fix L-BFGS linesearch loop
* improve finetune time measurement
fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.
* specify default lora rank with '--lora-r N'
'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.
* fix gradient accumulation bug where the same batch was used for each microstep
* fix gradient accumulation bug where the same batch was used for each microstep
* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back
k and v can now be repeated in q along ne[2]
in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.
in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.
since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.
we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.
change test-grad0 to also test for repeated k/v in q.
this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.
* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.
* fix finetune to support grouped-query-attention (using flash-attention)
note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.
* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)
* test broadcasting mul_mat backward pass
* decouple random number generator of each operation test
when changing one test the rng of others tests is not influenced anymore
* add comment briefly describing what ggml_repeat_back does
* simplify broadcasting mul_mat backward using ggml_repeat_back
* add cgraph evaluation order member and corresponding enum type
this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).
* measure max compute size for each cgraph eval order and use best order
this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB
* remove unused command line options
* add sample start patterns and options to force new or by default resume last shuffling
* update shuffle rng state on reshuffle
* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* remove probably unnecessary exception type flags from stringstream
* pass correct max number of tokens to llama_tokenize
* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]
* use unrolled vec_mad in out_prod
y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.
ggml_vec_mad_f32_unroll will internally loop over x and v with same y.
GGML_VEC_MAD_UNROLL is by default defined to 32.
This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.
Full measurements of out-prod runtime in ms:
unroll_xv unroll_yv
1 67014.643 87826.469
2 77117.552 89077.656
4 72091.311 109121.657
8 61077.543 88678.334
16 56914.67 79514.947
24 59024.595 84350.254
28 55952.446 83368.73
32 51476.658 85177.745
36 55973.792 84659.92
40 55139.616 93844.738
48 60736.392 93330.267
64 99856.878 116994.99
Second column is when unrollying yv instead of xv
* set lora_alpha to value of lora_r if it is not set via command line
otherwise only changing lora_r will change scaling of lora adapter used in prediction
* reshuffle original sample order instead of the previous shuffled order
otherwise resumed reshuffle will not result in same sample order
* block tiling for out-prod inspired by mul-mat
block sizes are empirically optimized
roughly doubles the flops of out-prod
* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* add static keywords
* remove outcommented old code
* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune
* remove lbfgs related train parameters
* move common train functions into common/train.[h|cpp]
* move train state into struct train_state
* move train data saving code into callback to unify code of opt_callback
train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp
* move common train params into common/train
* move common opt_callback into common/train
* fix consume_common_train_arg
* save and load head_count_kv in lora checkpoints
* increase train_samples by used_samples instead of number of batches
on batch can contain more than one sample when option "fill_with_next_samples" is used
* fix usage of llama_tokenize
* remove static from process_escape since we need it exposed in header
* fix code formating of long function declarations
* fix condition in load_train_state_gguf
* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")
* fix saving and loading of training type
* remove terminating '\0' from tokenization
(llama_tokenize is now passed the string length instead of relying on terminating '\0')
* fix compile warnings
* fix compile warnings
* use new/delete for train_state instead of malloc/free
using malloc may result in seg faults when trying to assign string fields
* assert that sample_count > 0, avoiding division by zero
* fix frand to return value in interval [0,1)
* add train option "--sample-random-offsets"
Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.
For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.
With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.
* deduplicate code into function
* remove n_rot hparam, as it must always be hparam.n_embd_head()
* align code
* assert correct base model tensor shapes
* move some params from lora hparams into model hparams and load model params from gguf
this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters
* remove now unnecessary llama API functions to get model params that where added by this PR
* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'
* train-text-from-scratch: automatically allocate opt context
* train-text-from-scratch: automatically allocate input tensors
* train-text-from-scratch: automatically allocate compute memory
* remove unused options and equalize train-text-from-scratch with finetune
* initialize opt->loss_after with zero
* add export-lora program
* remove trailing whitespace
* add export-lora build in Makefile
* remove unused struct tensor_info from export-lora
* add export-lora build dependency to llama
because it depends on common, which depends on llama
* update finetune README.md
* cancel optimization when specified number of epochs is completed
* improve handling of export-lora arguments
print errors and warnings when files could not be read or created
* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)
* Fix export-lora.cpp "not enough space in the context's memory pool"
Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".
* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16
---------
Co-authored-by: xaedes <xaedes@gmail.com>
* improve handling of not yet supported tensor types
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
* Fix für #2721
* Reenable tokenizer test for LLaMa
* Add `console.cpp` dependency
* Fix dependency to `common`
* Fixing wrong fix.
* Make console usage platform specific
Work on compiler warnings.
* Adapting makefile
* Remove trailing whitespace
* Adapting the other parts of the makefile
* Fix typo.
* Fixing the last deviations from sentencepiece indicated by test-tokenizer-1
* Simplify logic
* Add missing change...
* Fix ugly compiler warning
* llama_tokenize should accept strings containing NUL now
* Adding huichen's test case
* Allow quantize tool to only copy tensors to allow repackaging models.
* Slightly better logic when requantizing.
* Change help message to go to `stdout`.
* tests : write a Python tokenizer test (wip)
* llama : prefix input text for tokenization with whitespace
* llama : distinguish pieces from decoded text + fix detokenization
* common : add comments
* examples : no longer manually add leading space when tokenizing
* tests : use Python to generate tokenizer tests for C++
* tests : add option to tokenize text files
ggml-ci
* tests : add test-tokenizer-1.py
* llama.cpp : fix LF token
* hellaswag : move the concat space for clarity
* tests : add falcon tests (py + cpp, currently do not pass Unicode)
ggml-ci
* common : temporary separate llama_detokenize calls for SPM and BPE
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* Add llama_beam_search().
* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().
* Add space around * pointers and & references.
* Add spaces around comparison and assignment operators.
* Prefer west const.
* Use llama_ prefix for structs in global namespace.
* Delete obsolete comment from an earlier revision.
* Change eos to eob in llama_beam and llama_beam_view structs.
* llama : add benchmark example
* add to examples CMakeLists.txt
* fix msvc build
* add missing include
* add Bessel's correction to stdev calculation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* improve markdown formatting
* add missing include
* print warning is NDEBUG is not defined
* remove n_prompt and n_gen from the matrix, use each value separately instead
* better checks for non-optimized builds
* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call
* fix json formatting
* add sql output
* add basic cpu and gpu info (linx/cuda only)
* markdown: also show values that differ from the default
* markdown: add build id
* cleanup
* improve formatting
* formatting
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* add log_callback to llama_context_params for custom logging.
* Fix macro expansion on gcc
* Add struct llama_state for global variables and move log_callback there
* Turn log level into enum and some minor changes.
* Remove model_for_logging parameter (not needed anymore)
* Convert remaining fprintf(stderr, ...) calls to use new macros.
* Fix enum and initialize g_state
* Fix log calls after merge
* Fix missing static
* Add back all the new lines in the logging strings
* Add comment for llama_log_callback and replace remaining printf calls
---------
Co-authored-by: grahameth <->
Co-authored-by: Helmut <helmut.buhler@inf.h-brs.de>
* make rms_norm_eps a parameter
* add rms_norm_eps to command line
* fix baby llama, test-grad0
* use scientific notation for eps param in the help
ggml-ci
* llama, main : constrain sampling to grammar
* allow loading grammar from file
* fix whitespace errors
* handle & print parser errors
* add comments to grammar syntax and allow newlines where unambiguous
* add missing include
* support alternates in root rule
* fix bugs with empty token and EOS
* adjust JSON grammar
* remove swp file
* rewrite ternary expressions
Co-authored-by: Henri Vasserman <henv@hot.ee>
* use struct for grammar elements and add Unicode support
* add unicode escapes
* add inverse char ranges
* only sample full tokens (no peeking or truncation)
* llama : minor style changes
blindly applied in online editor - hopefully I didn't break something
* update help text
* add warning message if EOS is disabled
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Implement customizable RoPE
The original RoPE has pre-defined parameters
theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]
Our customizable RoPE, ggml_rope_custom_inplace, uses
theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]
with the default matches the original
scale = 1.0
base = 10000
The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.
Recent researches show changing these two parameters extends the context limit with minimal loss.
1. Extending Context to 8K
kaiokendev
https://kaiokendev.github.io/til#extending-context-to-8k
2. Extending Context Window of Large Language Models via Positional Interpolation
Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
https://arxiv.org/abs/2306.15595
3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
https://www.reddit.com/user/bloc97https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5
* ggml-metal: fix custom rope
* common: fix argument names in help
* llama: increase MEM_REQ_EVAL for MODEL_3B
It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.
* llama: make MEM_REQ_EVAL depend on n_ctx
* server: use proper Content-Type in curl examples
Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded
Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192
With Content-Type: application/json, we can send large json data.
* style : minor fixes, mostly indentations
* ggml : fix asserts
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Initial implementation
* Remove debug print
* Restore signature of llama_init_from_gpt_params
* Free guidance context
* Make freeing of guidance_ctx conditional
* Make Classifier-Free Guidance a sampling function
* Correct typo. CFG already means context-free grammar.
* Record sampling time in llama_sample_classifier_free_guidance
* Shift all values by the max value before applying logsoftmax
* Fix styling based on review
* MPI support, first cut
* fix warnings, update README
* fixes
* wrap includes
* PR comments
* Update CMakeLists.txt
* Add GH workflow, fix test
* Add info to README
* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)
* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()
* mpi : move all MPI logic into ggml-mpi
Not tested yet
* mpi : various fixes - communication now works but results are wrong
* mpi : fix output tensor after MPI compute (still not working)
* mpi : fix inference
* mpi : minor
* Add OpenMPI to GH action
* [mpi] continue-on-error: true
* mpi : fix after master merge
* [mpi] Link MPI C++ libraries to fix OpenMPI
* tests : fix new llama_backend API
* [mpi] use MPI_INT32_T
* mpi : factor out recv / send in functions and reuse
* mpi : extend API to allow usage with outer backends (e.g. Metal)
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* use javascript generators as much cleaner API
Also add ways to access completion as promise and EventSource
* export llama_timings as struct and expose them in server
* update readme, update baked includes
* llama : uniform variable names + struct init
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add interface for float input
* fixed inpL shape and type
* add examples of input floats
* add test example for embd input
* fixed sampling
* add free for context
* fixed add end condition for generating
* add examples for llava.py
* add READMD for llava.py
* add READMD for llava.py
* add example of PandaGPT
* refactor the interface and fixed the styles
* add cmake build for embd-input
* add cmake build for embd-input
* Add MiniGPT-4 example
* change the order of the args of llama_eval_internal
* fix ci error
* detect NUMA systems and pin work threads to nodes (linux)
* disable mmap prefetch/readahead for NUMA systems
* avoid sending finalize op to thread pool if it does nothing
* silence robot
* fix args
* make --numa a param
* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement
* lower synchronization overhead
* statically allocate
* move numa state to g_state
* add description for --numa
* ggml : minor style changes
* ggml : minor style + try fix sanitizer build
* llama : allow to initialize backend with NUMA support
* llama : avoid ggml include in llama-util.h
* ggml : style / formatting
* ggml : fix handling of ops with n_threads > n_tasks > 1
* server : utilize numa parameter
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : make model stateless and context stateful
* llama : minor cleanup
* llama : update internal API declaration
* Apply suggestions from code review
fix style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Missing model memory release
* Fix style
* Add deprecated warning for public API function llama_init_from_file
* Update public API use cases: move away from deprecated llama_init_from_file
* Deprecate public API function llama_apply_lora_from_file
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add python wrapper
https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce
* fix decoding error. adds errors=ignore parameter
* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)
* update python bindings
* add text generating baby-llama from scratch example
* fix race condition bug in ggml_compute_forward_diag_mask_f32
* implement ggml_soft_max_back for more performant backward pass of soft_max
avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss
* improve softmax backward pass
go from quadratic runtime to linear runtime by simplifying the formulas
* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32
memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase
* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build
* improve performance of mul_mat backward pass
avoid transpose by using mul_mat with swapped arguments
* avoid printing too much newlines in baby-llama-text
* activate threading in baby-llama-text
* add ggml_out_prod and use it for mul_mat backward pass for improved performance
performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests
* better weight initialization improves training convergence at start
* better weight initialization improves training convergence at start
* improve ggml_out_prod performance
- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)
* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data
* fix get_samples call, add model tensor names, increase model size, start training samples after newline
* save train trained model to checkpoint and load model to be trained from checkpoint
* use inplace functions where possible
* initialize rng with srand
* use different arguments for input and output checkpoint
* ggml fixes to support backward pass on inplace operations
* remove duplicate include
* fix cross entropy loss
- add target probabilities for each sample which is then used in cross entropy loss
* print used memory before and after optimization
* sample with non-greedy sampling parameters at the end of training
* add cmake target for baby-llama-text
* add ggml_add1_inplace to header
* enable gradient propagation for inplace add1 and scale operations
those functions backward passes don't need the original src0, so they also work when forward is inplace
* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)
also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.
since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.
* use inplace operations in cross_entropy_loss
* fix random weight initialization scale
* add missing default parameters for adam optimizer
* add ggml_opt_context, so that we can properly resume training
otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.
now the optimizer context and all its memory is stored in a separate struct.
* fix bug in llama_sample_token_mirostat_v2
when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.
* add forward function without using cache, for more performant training
during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.
* print suppressed newline tokens as string "\n"
printing too much actual newlines is suppressed to avoid flooding the console.
* store optimizer state in training checkpoint and add learning schedule
persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts
* remove unused functions
* fix bug in get_samples which corrupted training targets
* save checkpoint only when it was trained
* simplify code
* remove trailing whitespace
* simplify backward pass for SQRT
* replace inefficient repeat backward pass with dedicated repeat_back operation
* add ggml_cross_entropy_loss with backward pass for faster training
cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.
* add tests for cross_entropy_loss backward pass
finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues
* use ggml_cross_entropy_loss in text training example
* remove trailing whitespace
* slightly improve how cross entropy loss is compute
btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..
* add llama_get_vocab to get the vocabulary as output parameters
* set default model.type for unknown models with few layers
* add export of training checkpoint to llama compatible model file
* get vocabulary for exporting training checkpoint to llama compatible model file
* implement backward pass of flash attention
* bugfixes for backward pass of flash attention
* test flash attention backward pass
need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.
* add option to train with flash attention and move options to the top of the main function
training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.
flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx
* add train_params and command line option parser
* remove unnecessary comments
* add train params to specify memory size
* remove python bindings
* rename baby-llama-text to train-text-from-scratch
* replace auto parameters in lambda function
* add #include <climits>
* add explicit cast to fix compile error
"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"
* remove trailing whitespace
* add ggml_opt_resume_g which accepts forward and backward cgraphs
* fix formulas in comments
* bug fix for ggml_compute_forward_get_rows_back_f32
the result should be set to zero, not to whatever data is in opt0
* improve training memory usage with scratch buffers
instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.
will compute backward pass for ALL model parameters
* add option to use scratch buffers in training or not
make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.
* ci : disable temporary
* store view offset and permute axes in opt[0] instead of storing it in padding
use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.
* minor : fix compile warnings + minor style changes
* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32
* store view offset like in master branch
* bug fix in forward_batch_wo_cache_flash_attn_train
* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train
data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.
replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.
replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.
* remove unnecessary scratch buffer 0
buf 0 is persistent memory, so we can just disable scratch for this by using buf -1
* avoid creating unnecessary grad tensors
previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.
improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.
* print used training seed
* zero initialize gfbuf and gbbuf
* ci : re-enable workflows + add README for training
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add support for quantizing already quantized models
* Threaded dequantizing and f16 to f32 conversion
* Clean up thread blocks with spares calculation a bit
* Use std::runtime_error exceptions.
* Starting to add k-quantization to ggml
I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.
* Adding Q3_K and Q8_K (de)-quantization
* Q3_K now working on CUDA and AVX2/scalar
CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).
* Some improvement for Q3_K on CUDA
It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.
* Some more CUDA optimizations for Q3_K
Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.
* Adding Q4_K - scalar, AVX2, CUDA
Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).
* Adding Q6_K - scalar, AVX2, CUDA
Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).
* Adding Q5_K - scalar, AVX2, CUDA
Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.
* Per convention, all QX_K quantizations use Q5_K for output.weight
* Adding quantization mixes
* Quantization mixes: didn't quite get what I wanted in the last commit
* Q4_K dot product for ARM_NEON
* Q6_K dot product for ARM_NEON
* Q5_K dot product for ARM_NEON
* Adding Q3_K dot for ARM_NEON
It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.
* A very slightly faster ARM_NEON Q3_K dot
* Adding Q2_K - just CUDA for now
Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.
* Adding scalar and AVX2 Q2_K dot
* Adding ARM_NEON Q2_K dot
About the same performance as Q4_K.
* A slightly faster ARM_NEON Q2_K dot
Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.
* Fixed bug in Q2_K CUDA dot product kernel
Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.
In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).
* Don't print zeros/NaNs when no count histogram has been collected
* A 10% faster CUDA vector dot kernel for Q3_K
Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.
* A slightly daster Q4_K AVX2 dot product
For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.
* A slightly faster ARM_NEON A4_K dot product
* Minor
* Fix quantization error test
We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.
* Fix docker build
I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.
* Added forgotten ggml.o dependence on k_quants.h to the Makefile
* Had unintentionally committed the Makefile with -Ofast enabled
* ggml : rename k_quants -> ggml-quants-k, use lowercase in code
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* mtl : export the LLaMA computation graph
* ci : disable temporary
* mtl : adapt the MNIST example as starter
* mtl : no need for mtl-export tool, add cli arg for main instead
* mtl : export just a small part of the graph for now to make it easier
* mtl : move MSL code into separate file for easy editing
* mtl : initial get_rows_q4_0 kernel
* mtl : confirmed get_rows_q4_0 is working correctly
* mtl : add rms_norm kernel + confirm working
* mtl : add mul kernel + confirm working
* mtl : initial mul_mat Q4 kernel (wrong results)
* mtl : mul_mat fixes (still wrong)
* mtl : another mul_mat Q4 (still does not work)
* mtl : working mul_mat q4
* ggml : fix handling of "view" ops in ggml_graph_import()
* mtl : add rope kernel
* mtl : add reshape and transpose handling
* ggml : store offset as opt arg for ggml_view_xd() operators
* mtl : add cpy kernel + handle view ops
* mtl : confirm f16 x f32 attention mul mat
* mtl : add scale kernel
* mtl : add diag_mask_inf kernel
* mtl : fix soft_max kernel
* ggml : update ggml_nbytes() to handle non-contiguous tensors
* mtl : verify V tensor contents
* mtl : add f32 -> f32 cpy kernel
* mtl : add silu kernel
* mtl : add non-broadcast mul kernel
* mtl : full GPU inference of the computation graph
* mtl : optimize rms_norm and soft_max kernels
* mtl : add f16 mat x f32 vec multiplication kernel
* mtl : fix bug in f16 x f32 mul mat + speed-up computation
* mtl : faster mul_mat_q4_0_f32 kernel
* mtl : fix kernel signature + roll inner loop
* mtl : more threads for rms_norm + better timing
* mtl : remove printfs from inner loop
* mtl : simplify implementation
* mtl : add save/load vocab to ggml file
* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)
* mtl : make it work with main example
Lots of hacks but at least now it generates text
* mtl : preparing for merge
* mtl : clean-up ggml mtl interface + suport scratch / inplace
* mtl : remove temp / debug code
* metal : final refactoring and simplification
* Revert "ci : disable temporary"
This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63.
* metal : add comments
* metal : clean-up stuff, fix typos
* readme : add Metal instructions
* readme : add example for main
1. Add a `LLAMA_SUPPORTS_GPU_OFFLOAD` define to `llama.h` (defined when compiled with CLBlast or cuBLAS)
2. Update the argument handling in the common example code to only show the `-ngl`, `--n-gpu-layers` option when GPU offload is possible.
3. Add an entry for the `-ngl`, `--n-gpu-layers` option to the `main` and `server` examples documentation
4. Update `main` and `server` examples documentation to use the new style dash separator argument format
5. Update the `server` example to use dash separators for its arguments and adds `-ngl` to `--help` (only shown when compiled with appropriate support). It will still support `--memory_f32` and `--ctx_size` for compatibility.
6. Add a warning discouraging use of `--memory-f32` for the `main` and `server` examples `--help` text as well as documentation. Rationale: https://github.com/ggerganov/llama.cpp/discussions/1593#discussioncomment-6004356