* convert : extend DEEPSEEK2 model architecture to support DeepseekV3ForCausalLM by adding EXPERT_WEIGHTS_NORM and EXPERT_GATING_FUNC model parameters and FFN_EXP_PROBS_B tensor type
* vocab : add DeepSeek V3 pre-tokenizer regexes
* unicode : handle ACCENT_MARK and SYMBOL categories in regex
* llama : add DeepSeek V3 chat template, handle new model parameters and tensor types
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* sampling : refactor + optimize penalties sampler
ggml-ci
* common : apply ignore_eos as logit bias
ggml-ci
* batched : remove penalties sampler
* params : allow penalty_last_n == -1 to be equal to context size
ggml-ci
* common : by default, move the penalties at the end of the sampling chain
ggml-ci
* common : ignore all EOG tokens
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* common : move back the penalties at the front of the sampling chain
ggml-ci
* readme : restore hint about --ignore-eos flag [no ci]
* llama : minor
ggml-ci
* webui : update
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* bug-fix: snprintf prints NULL in place of the last character
We need to give snprintf enough space to print the last character and the null character, thus we allocate one extra byte and then ignore it when converting to std::string.
* add comment about extra null-term byte requirement
* rename ggml-cpu-aarch64.c to .cpp
* reformat extra cpu backend.
- clean Q4_0_N_M and IQ4_0_N_M
- remove from "file" tensor type
- allow only with dynamic repack
- extract cpu extra bufts and convert to C++
- hbm
- "aarch64"
- more generic use of extra buffer
- generalise extra_supports_op
- new API for "cpu-accel":
- amx
- aarch64
* clang-format
* Clean Q4_0_N_M ref
Enable restrict on C++
* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack
* added/corrected control on tensor size for Q4 repacking.
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add debug logs on repacks.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : add enum for supported chat templates
* use "built-in" instead of "supported"
* arg: print list of built-in templates
* fix test
* update server README
It's like simple-chat but it uses smart pointers to avoid manual
memory cleanups. Less memory leaks in the code now. Avoid printing
multiple dots. Split code into smaller functions. Uses no exception
handling.
Signed-off-by: Eric Curtin <ecurtin@redhat.com>
* llama : accept a list of devices to use to offload a model
* accept `--dev none` to completely disable offloading
* fix dev list with dl backends
* rename env parameter to LLAMA_ARG_DEVICE for consistency
* llama: propagating the results of `graph_compute` to the user interface
* llama: reverting kv_cache in case of failed compute
* llama: `llama_kv_cache_state` was removed, only the result of `llama_graph_compute` is returned
* llama: restore a kv_cache in case of failed computation
* llama: correct reverting of the entire batch.
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models
* llama: updated comments
* llama : add comments about KV cache state after error
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : deprecate softmax sampler + fix dist sampler
ggml-ci
* tests : replace macros with functions
ggml-ci
* sampling : change temperature sampler logic
For t <= 0.0f, keep the max logit intact and set the rest to -inf
* cont : no need for special "greedy" logic
top-k == 1 is the same
* tests : init prob correctly
* llama : handle temp <= 0.0 in the temp_ext sampler too
ggml-ci
* cont : avoid extra loop in temperature sampler for sub-zero temp
ggml-ci
* Initial XTC commit
Adds XTC sampler, not activated by default, but recommended settings by default.
* Cleanup
* Simplified chances calculation
To be more inline with the original implementation, chance is calculated once at the beginning.
* First fixes by comments
Still need to look into sorting
* Fixed trailing backspaces
* Fixed RNG to be reproduceable
Thanks to @slaren for directions
* Fixed forgotten header
* Moved `min_keep`
Moved from conditions to a simple check at the end.
* Fixed broken randomization
Thanks to @slaren for explanation
* Swapped sorting for a custom algorithm
Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.
* Algorithm rework
1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.
* Added XTC to `test-sampling`
* Simplified algorithm and more tests
* Updated info in common and args
* Merged back lost commits in common and arg
* Update dump info in common
* Fixed incorrect min_keep check
* Added XTC to README
* Renamed parameters, fixed info and defaults
* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off
* Initial server support
* Added XTC to server UIs
* Fixed labels in old server UI
* Made algorithm safer and more readable
* Removed xtc_threshold_max
* Fixed arg after update
* Quick fixes by comments
* Simplified algorithm since threshold_max is removed
* Renamed random distribution
* Fixed tests and outdated README
* Small fixes
* llama : improve infill support
ggml-ci
* llama : add more FIM token strings
ggml-ci
* server : update prompt on slot restore (#9800)
* gguf : deprecate old FIM token KVs
* llama : llama_perf + option to disable timings during decode
ggml-ci
* common : add llama_arg
* Update src/llama.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* perf : separate functions in the API
ggml-ci
* perf : safer pointer handling + naming update
ggml-ci
* minor : better local var name
* perf : abort on invalid sampler pointer
ggml-ci
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b
* ggml-quants : faster 1.625 bpw AVX2 vec_dot
Not using a lookup table anymore makes it match q4_0 speed.
* gguf-py : fix formatting
* llama : remove spaces on empty line
* ggml-quants : subtract 1 when back in epi8
This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.
* ggml-quants : Q2_2 now faster than Q4_K on with AVX2
* ggml-quants : cleanup Q1_3 code formatting
* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3
* ggml-quants : use ceiling division when quantizing q1_3
* convert-hf : simplify BitNet pre-quantization
This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.
* convert-hf : allow converting the weird BitNet 1.3B
Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.
* bitnet : replace 1.58b with b1.58, as in the paper
* ggml-quants : fix build failure on Windows
* ggml-quants : attempt to fix Arm 32-bit support
* ggml : add some informative comments in q1_3 vec_dot
* ggml : add TQ1_0 and TQ2_0 ternary quantization types
* ggml : even faster TQ2_0
* ggml : also faster TQ1_0
Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.
* ggml : fix build issues in certain environments
* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0
* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat
The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.
* ggml : remove q1_3 and q2_2
No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.
* llama : remove the separate scale tensors of BitNet b1.58
They won't be needed, since the remaining ternary quant types have
built-in scales.
* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency
* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot
Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.
* ggml-quants : remove comment about possible format change of TQ2_0
Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.
* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0
* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0
This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.
* convert : allow direct conversion to TQ1_0 and TQ2_0
The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.
* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0
Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.
* ggml-quants : allow using ARM dot product instructions for TQ1_0
* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support
* ggml : remove unused ggml_mul special case
It would otherwise conflict with the more general
optimization coming with Mamba-2.
* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators
* test-backend-ops : add TQ1_0 and TQ2_0 comments for later
Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.