Commit Graph

2614 Commits

Author SHA1 Message Date
jameswu2014
bcce96ba4d
convert.py : fix baichuan7B support (#2870)
* [Fix]: convert.py support baichuan7B

* convert.py : fix trailing whitespaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-29 12:48:41 +03:00
Jhen-Jie Hong
74e0caeb82
readme : add react-native binding (#2869) 2023-08-29 12:30:10 +03:00
Cebtenzzre
d4b5e16c32
make : fix clang tests build, add missing examples (#2859)
* make : do not pass headers to the compiler

This fixes building tests with clang.

* make : add missing examples

* make : fix build-info.h dependencies
2023-08-29 11:42:41 +03:00
Georgi Gerganov
3a007648f2
metal : add option to disable debug logs (close #2764) 2023-08-29 11:33:46 +03:00
Georgi Gerganov
611363ac79 scripts : add pipefail 2023-08-29 10:50:30 +03:00
Marcus Dunn
95b6e5212f
added struct to llama_dump_timing_info_yaml's llama_context (#2857)
fixes C compat.
2023-08-29 09:33:27 +03:00
xaedes
44c117f41e
train : mem usage and other improvements (#2439)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add missing lctx argument to get_example_targets_batch

* implement llama model file saving using gguf

checkpoint loading and saving disabled, to be replaced by loading and saving via gguf

* implement loading/saving of checkpointing files using GGUF

* bug fixes

* add checkpoint file version for future compatibility

* update readme with gguf filenames

* save & load opt->just_initialized value

* add first draft for checkpoint conversion script

* add gguf arch and ftype

* save opt parameter counter as uint64

* add gguf key and tensor names for optimizer and training

* add layer_norm_rms_eps to checkpoint convert script

* use same GGUF_GET_KEY macro as in llama.cpp

* use norm_rms_eps, and rope parameters and command line options to set them

* fix memory corruption bug in gguf

ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.

* add gguf example cmake file

* bug fixes in tokenize_file

* bug fixes in load_llama_model_gguf

* bug fix: init model when no checkpoint was loaded

* bug fix in read_tensor_by_name

* bug fix in load_opt_context_gguf

* avoid printing lots of spaced on the unusual case that loss gets nan

* set name of tensors with empty name from what was read from gguf

* remove trailing whitespace

* print data checksums before saving and after loading to verify correctness

* bug fixes for convert-train-checkpoint-to-gguf

* temporarily add code to write old checkpoint files

used to verify that old checkpoint files are correctly converted to gguf

* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0

* remove code used to verify correctness of checkpoint file conversion

* remove trailing whitespace

* remove prediction related code

use main for prediction, it is better optimized

* update train-text-from-scratch README.md

* fix non-windows GGML_ALIGNED_REALLOC

* add missing blank line at end of file

* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos

* train : fix compile warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28 22:51:47 +03:00
slaren
43033b7bb4
llama-bench : set locale to utf8 (#2832) 2023-08-28 19:19:18 +02:00
Johannes Gäßler
6b73ef1201
YAML result logging + preset script (#2657) 2023-08-28 17:59:39 +02:00
alonfaraj
75fafcbccc
make : fix tests build (#2855)
* makefile:
- fix test name
- add missing tests build

* editorconfig : fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28 18:38:35 +03:00
grahameth
be475f60af
llama.cpp : fix wrong vsnprintf call in MS compiler (#2856)
Co-authored-by: grahameth <->
2023-08-28 18:38:12 +03:00
Ronny Brendel
3af6b86301
ggml : tiny ggml_vec_dot_q4_K_q8_K AVX2 improvement (#2819) 2023-08-28 15:51:08 +03:00
Georgi Gerganov
35feac6560
ggml : sync (mem align to header + conv_transpose_2d fixes + ggml_alloc) (#2852)
* ggml : sync (mem align to header + conv_transpose_2d fixes)

ggml-ci

* ggml-alloc : minor fix

* ggml-alloc : sync more fixes
2023-08-28 14:24:53 +03:00
Johannes Gäßler
92b1bbd2ec
CUDA: fix RoPE asserts, block sizes (#2833) 2023-08-28 14:23:55 +03:00
igarnier
dd0dc366da
llama.h : add missing struct keyword for C compat in callback type (#2847) 2023-08-28 11:19:59 +03:00
Georgi Gerganov
f55538c3cc
metal : fix memory leak (#2762)
* metal : fix memory leak

* metal : fix encoders memory leak

* metal : clean up more memory resources

* metal : fix more leaks

* metal : reuse dispatch queue + autoreleasepool

* metal : reuse array for command buffers and encoders

* ggml : assert for odd number of blocks on ARM

15M tinyllama is an example
2023-08-28 10:59:08 +03:00
Cebtenzzre
ebcee207b6
quantize : make output filename optional again (#2823)
* quantize : make output filename optional again

* quantize : fix path parsing on Windows

suggested by @slaren
2023-08-28 09:32:25 +03:00
JohnnyB
3e8ff47af6
devops : added systemd units and set versioning to use date. (#2835)
* Corrections and systemd units

* Missing dependency clblast
2023-08-28 09:31:24 +03:00
Georgi Gerganov
103cfafc77
gguf : fix strings to not be null-terminated (#2839)
* gguf : fix strings to not be null-terminated

ggml-ci

* gguf : fix gguf_add_tensor name
2023-08-27 21:50:22 +03:00
Georgi Gerganov
c10704d01e
llama : fix MPI threads (close #2827) 2023-08-27 18:55:41 +03:00
Olivier Chafik
230d46c723
examples : update llama2.c converter to read vocab and write models in GGUF format (#2751)
* llama2.c: direct gguf output (WIP)

* Simplify vector building logic

* llama2.c gguf conversion: fix token types in converter

* llama2.c: support copying vocab from a llama gguf model file

* llama2.c: update default path for vocab model + readme

* llama2.c: use defines for gguf keys

* llama2.c: escape whitespaces w/ U+2581 in vocab converter the llama.cpp way

* llama2.c converter: cleanups + take n_ff from config
2023-08-27 17:13:31 +03:00
Kawrakow
463173a6c0
llama : speedup tokenization (#2831)
* Speedup tokenization

On current master it takes ~3.2 seconds to tokenize
Wikitext. With this change it becomes ~525 ms.

* Fixit: it was missing the piece after the last found occurence

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-27 16:50:33 +03:00
Georgi Gerganov
eaa13a48ff
falcon : fix CUDA inference by making K and Q contiguous (#2830)
* falcon : fix CUDA inference by making K and Q contiguous

ggml-ci

* cuda : add assert to guard from non-cont ropes
2023-08-27 16:40:48 +03:00
Georgi Gerganov
da7455d046
readme : fix headings 2023-08-27 15:52:34 +03:00
Georgi Gerganov
25423e9185
scripts : helper convert script 2023-08-27 15:24:58 +03:00
Kawrakow
a6d1189fdd
k_quants tuning for Falcon-7b (#2816)
* Make ggml-cuda.cu build with QK_K = 64

Using LLAMA_CUDA_FORCE_DMMV = ON and -nommq it runs and produces
a meaningful result.

* k_quants tuning for Falcon-7b

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-27 15:19:59 +03:00
Georgi Gerganov
c48c5bb0b0
readme : update hot topics 2023-08-27 14:44:35 +03:00
Georgi Gerganov
d0cee0d36d
gguf : add 64-bit support (GGUF v2) (#2821)
* gguf : bump version to 2

* gguf : add support for 64-bit (no backwards comp yet)

* gguf : v1 backwards comp

* gguf.py : bump GGUF version

* gguf.py : uint64_t on all lengths, sizes and counts, enums still uint32_t

* gguf.py : string lengths uint32_t

* gguf : update all counts to 64-bit

* gguf.py : string len uint64_t and n_dims uint32_t

* gguf : fix typo

* llama.cpp : print gguf version

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27 14:19:54 +03:00
Georgi Gerganov
edd4c14817
llama : more tokenizer fixes (#2810)
* tests : write a Python tokenizer test (wip)

* llama : prefix input text for tokenization with whitespace

* llama : distinguish pieces from decoded text + fix detokenization

* common : add comments

* examples : no longer manually add leading space when tokenizing

* tests : use Python to generate tokenizer tests for C++

* tests : add option to tokenize text files

ggml-ci

* tests : add test-tokenizer-1.py

* llama.cpp : fix LF token

* hellaswag : move the concat space for clarity

* tests : add falcon tests (py + cpp, currently do not pass Unicode)

ggml-ci

* common : temporary separate llama_detokenize calls for SPM and BPE

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27 14:19:19 +03:00
Przemysław Pawełczyk
1591e2e590
ggml : detect SSSE3 (#2825)
* ggml : add ggml_cpu_has_ssse3

* llama : show SSSE3 in system info
2023-08-27 11:10:25 +03:00
slaren
789c8c945a
ci : add LoRA test to CI (#2650)
* ci : add lora test

ggml-ci

* move lora summary to the top, add lora logs

ggml-ci

* ci : decrease CPU ppl runs to 2 to avoide 20 min timeout

ggml-ci

* add 7b lora test

use 1 thread for CUDA generation tests

ggml-ci

* add test with q8_0 (cpu only)

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-27 10:03:27 +03:00
Bruce MacDonald
c1ac54b77a
server : add /detokenize endpoint (#2802)
* Add a /detokenize endpoint to the example server

* remove trailing white-space
2023-08-27 07:11:45 +08:00
Kerfuffle
730d9c681e
convert.py : advanced option (#2753)
* Allow convert.py to convert to q8_0

Fix issue with bounded_parallel_map and greedy consuming iterator

Display elapsed time during conversion

* Add --concurrency option

Minor improvements to help text

Clean up bounded_parallel_map function a bit

* Massive speed improvement thanks to Cebtenzzre

* Refactor types
2023-08-26 23:13:36 +03:00
Tim Miller
c7d92e6dfe
llama : use Unicode Escape Sequence to replace encoded characters (#2814)
The use of special characters within source files can break compiling on some computers with different region and language settings. Using Unicode escape sequences should allow for the code to be compiled on all setups without needing to change your computers settings or switch regions.
2023-08-26 21:27:07 +03:00
Tungsten842
61d1a2895e
flake.nix : add rocm support and cleanup (#2808) 2023-08-26 21:19:44 +03:00
Cebtenzzre
741ca7dd1c
llama : move #includes out of _GNU_SOURCE conditional (#2817) 2023-08-26 21:17:51 +03:00
Dr. Tom Murphy VII Ph.D
72f895c923
main : fix bug (penalize_nl=false doesn't work) + suppress warning on mingw (#1528)
* Fix bug in main.cpp where penalize_nl=false has no effect. It modifies the underlying logits array, but at this point we are already working on the candidates copy.

* Suppress redefinition warning for NOMINMAX on mingw. In my installation, this macro is already defined by /usr/lib/gcc/x86_64-w64-mingw32/11/include/c++/x86_64-w64-mingw32/bits/os_defines.h:45.

* main : fix indentation

* main : pass ctx to llama_token_nl()

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-26 21:12:56 +03:00
Cebtenzzre
50526f37eb
llama : use std::abs in llama_sample_tail_free (#2800)
Plain 'abs' casts the input to int.
2023-08-26 19:53:52 +03:00
Georgi Gerganov
04f4b1eb10
k-quants : remove unnecessary tensor shape restrictions (#2811) 2023-08-26 17:37:35 +03:00
Kawrakow
7592375403
Better perplexity for 2- and 3-bit quantization for LLaMA-v2-70B (#2807)
* Better perplexity for 2- and 3-bit quantization for the 70B model

* PR comment

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-26 17:27:49 +03:00
Kawrakow
771551a793
Fix HellaSwag (#2805)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-26 16:48:53 +03:00
Volodymyr Vitvitskyi
f305bad11e
flake : build llama.cpp on Intel with nix (#2795)
Problem
-------
`nix build` fails with missing `Accelerate.h`.

Changes
-------
- Fix build of the llama.cpp with nix for Intel: add the same SDK frameworks as
for ARM
- Add `quantize` app to the output of nix flake
- Extend nix devShell with llama-python so we can use convertScript

Testing
-------
Testing the steps with nix:
1. `nix build`
Get the model and then
2. `nix develop` and then `python convert.py models/llama-2-7b.ggmlv3.q4_0.bin`
3. `nix run llama.cpp#quantize -- open_llama_7b/ggml-model-f16.gguf ./models/ggml-model-q4_0.bin 2`
4. `nix run llama.cpp#llama -- -m models/ggml-model-q4_0.bin -p "What is nix?" -n 400 --temp 0.8 -e -t 8`

Co-authored-by: Volodymyr Vitvitskyi <volodymyrvitvitskyi@SamsungPro.local>
2023-08-26 16:25:39 +03:00
Nigel Bosch
a2ca4e9de9
Handle null rope scaling value (#2793) 2023-08-26 14:11:17 +02:00
klosax
2ba83c8685
Fix spm whitespaces (#2806)
* llama.cpp : fix spm whitespace escaping + clean up

* main.cpp : spm - add whitespace in front of prompt

* test-tokenizer-0.cpp : spm - add whitespace in front of prompt
2023-08-26 13:45:53 +02:00
lon
bae5c5f679
examples : skip unnecessary external lib in server README.md how-to (#2804) 2023-08-26 16:07:43 +08:00
Marcus Dunn
232caf3c15
llama : fix struct decl (#2790) 2023-08-25 19:17:15 +03:00
Kawrakow
d046dcee08
Faster perplexity computation (#2786)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-25 19:05:02 +03:00
Matt Pulver
c82742ac9c
llama : add llama_beam_search() (#2267)
* Add llama_beam_search().

* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().

* Add space around * pointers and & references.

* Add spaces around comparison and assignment operators.

* Prefer west const.

* Use llama_ prefix for structs in global namespace.

* Delete obsolete comment from an earlier revision.

* Change eos to eob in llama_beam and llama_beam_view structs.
2023-08-25 18:18:48 +03:00
Nigel Bosch
28b2c996ca
convert.py : Get rope scale from HuggingFace models (#2772)
* Get rope scale from HF models

* Save rope scale only for linear scaling

* Rewrite for clarity
2023-08-25 16:41:52 +02:00
slaren
154725c543
llama-bench : add model sizes (#2771)
* llama-bench : add model sizes

* more compact markdown output

* back to GiB

* adjust column sizes
2023-08-25 15:16:19 +02:00