* Add "/chat/completions" as alias for "/v1/chat/completions"
* merge to upstream master
* minor : fix trailing whitespace
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Try IQ4_NL with blocks of 64 - does not look good
* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32
* iq4_xs: CUDA works - 133.2 t/s
* iq4_xs: AVX2 dot product
* iq4_xs: ARM_NEON dot product
* iq4_nl: Metal implementation
As usual, Metal / Apple Silicon don't like my quants.
* iq3_xs: minor fix
* iq4_xs: shrink by using IQ3_S for attn_k and attn_q
* iq4_xs: revert using IQ3_S for attn_k and attn_v
PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.
* Fix CI
* iq4_xs: Added forgotten check for 256 divisibility
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding IQ2_S and IQ2_M as a single cumulative commit
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: docs - refresh and tease a little bit more the http server
* Rephrase README.md server doc
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/README.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/README.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update README.md
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The system prompt is now decoded in batches.
* server : fix off-by-one n_past when start of prompt matches whole cache
The tokens right after the matching part would otherwise skip a pos value.
* [ggml-quants] Provide ggml_vqtbl1q_u8 for 64bit compatibility
vqtbl1q_u8 is not part of arm v7 neon library
* [android-example] Remove abi filter after arm v7a fix
* [github-workflows] Do not skip Android armeabi-v7a build
* server: logs - always use JSON logger, add add thread_id in message, log task_id and slot_id
* server : skip GH copilot requests from logging
* server : change message format of server_log()
* server : no need to repeat log in comment
* server : log style consistency
* server : fix compile warning
* server : fix tests regex patterns on M2 Ultra
* server: logs: PR feedback on log level
* server: logs: allow to choose log format in json or plain text
* server: tests: output server logs in text
* server: logs switch init logs to server logs macro
* server: logs ensure value json value does not raised error
* server: logs reduce level VERBOSE to VERB to max 4 chars
* server: logs lower case as other log messages
* server: logs avoid static in general
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: logs PR feedback: change text log format to: LEVEL [function_name] message | additional=data
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: monitoring - add /metrics prometheus compatible endpoint
* server: concurrency issue, when 2 task are waiting for results, only one call thread is notified
* server: metrics - move to a dedicated struct
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* Resurrecting iq3_xs
After all the experimentation, nothing was better than this.
* Minor PPL improvement via a block scale fudge factor
* Minor improvement via 3 neighbours
* iq3_xs: working scalar and AVX2 dot products
* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)
* iq3_xs: working Metal implementation
* Adding IQ3_M - IQ3_XS mix with mostly Q4_K
* iiq3_xs: a 3.4375 bpw variant
* iq3_xs: make CUDA work for new version
* iq3_xs: make scalar and AVX2 work for new version
* iq3_s: make ARM_NEON work with new version
* iq3_xs: make new version work on metal
Performance is very similar to Q3_K_S
* iq3_xs: tiny Metal speed improvement
* iq3_xs: tiny Metal speed improvement
* Fix stupid warning
* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS
* iq3_xs: rename to iq3_s
* iq3_s: make tests pass
* Move Q3_K_XS mix to 3.25 bpw
* Attempt to fix failing tests
* Another attempt to fix the Windows builds
* Attempt to fix ROCm
* ROCm again
* iq3_s: partial fix for QK_K = 64
* iq3_s: make it work on metal for QK_K = 64
Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.
* Will this fix ROCm?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* server: tests: init scenarios
- health and slots endpoints
- completion endpoint
- OAI compatible chat completion requests w/ and without streaming
- completion multi users scenario
- multi users scenario on OAI compatible endpoint with streaming
- multi users with total number of tokens to predict exceeds the KV Cache size
- server wrong usage scenario, like in Infinite loop of "context shift" #3969
- slots shifting
- continuous batching
- embeddings endpoint
- multi users embedding endpoint: Segmentation fault #5655
- OpenAI-compatible embeddings API
- tokenize endpoint
- CORS and api key scenario
* server: CI GitHub workflow
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: fallback to chatml
* add new chat template
* server: add AlphaMonarch to test chat template
* server: only check model template if there is no custom tmpl
* remove TODO
* server: health: fix race condition on slots data using tasks queue
* server: health:
* include_slots only if slots_endpoint
* fix compile warning task.target_id not initialized.
This commit adds the `--skip-unknown` option to the convert.py script
and removes the saving of the updated checkpoints to avoid updating
possibly checked out files.
The motivation for this change is that this was done for 1.5
in Commit fc0c8d286a533363a9a663510b62af85ffad58b3 ("llava :
update surgery script to not remove tensors") and makes the examples
more consistent.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit contains a suggestion for the README.md in the llava
example. The suggestion adds explicit instructions for how to convert
a llava-1.6 model and run it using llava-cli.
The motivation for this is that having explicit instructions similar to
the 1.5 instructions will make it easier for users to try this out.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* support minLength and maxLength in JSON schema grammar converter
* Update examples/json-schema-to-grammar.py
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This is a follup of Commit fc0c8d286a533363a9a663510b62af85ffad58b3
("llava : update surgery script to not remove tensors") but this time
the change is to the BakLLaVA specific part of the surgery script.
I've been able to test this using SkunkworksAI/BakLLaVA-1 and it works
as expected using the instructions in README.md.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* server: enrich health endpoint with available slots, return 503 if not slots are available
* server: document new status no slot available in the README.md
This commit updates the surgery script to not remove the tensors from the
model file. For this to work the `--skip-unknown` flag is added as an
argument to the convert.py script in README.md.
The motivation for this change is that the surgery script currently
removes the projector tensors from the model file. If the model was
checked out from a repository, the model file will have been updated
and have to be checked out again to reset this effect. If this can be
avoided I think it would be preferable.
I did not perform this change for BakLLaVA models as I am not sure
how that part works.
* iq1_s: WIP basics
* iq1_s: CUDA is working
* iq1_s: scalar CPU dot product
* iq1_s: WIP AVX2 dot product - something is not right
* Fix tests
* Fix shadow warnings
* Fix after merge with latest master
* iq1_s: AVX2 finally works
* iq1_s: ARM_NEON dot product. Works, but not very fast
* iq1_s: better grid
* iq1_s: use IQ2_XXS for attn_output
At a cost of 0.04 extra bpw this gives a big improvement in PPL.
* iq1_s: Metal basics
Dequantize works, but not dot product
* iq1_s: Metal works, but quite slow
As usual, Apple Silicon does not like the code I write.
* iq1_s: Tests
* iq1_s: slightly faster dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverted Makefile
* Fixed include
* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables
* removed trailing whitespace
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h
* Reverting Makefile
* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet
* Removing MIRROR_MODE code for this PR
* Removing last bit of MIRROR_MODE code for this PR
* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static
* Fixed lingering init_llama_backend() bool calls in tests and examples
* Remote enum llama_numa_strategies
* Revert bad merge with dynatemp flags
* add missing enum ggml_numa_strategies declaration and revert sync problem with master
* add missing enum ggml_numa_strategies declaration
* fixed ggml_init_numa variable
* Update ggml.h
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges
* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples
* Fix up some boolean vs enum comparisons
* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype
* Update ggml.h
Align enum values
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
Remove whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml.c
align paremeters
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/server/server.cpp
remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/common.cpp
Remove whitespace and align brace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example
* Update ggml.c
simplified return for platforms without NUMA support
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* removed redundant else from cli argument processing of --numa
* whitespace
---------
Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>