mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 14:20:31 +01:00
2ac95c9d56
* SimpleChat:DU:BringIn local helper js modules using importmap Use it to bring in a simple trim garbage at end logic, which is used to trim received response. Also given that importmap assumes esm / standard js modules, so also global variables arent implicitly available outside the modules. So add it has a member of document for now * SimpleChat:DU: Add trim garbage at end in loop helper * SimpleChat:DU:TrimGarbage if unable try skip char and retry * SimpleChat:DU: Try trim using histogram based info TODO: May have to add max number of uniq chars in histogram at end of learning phase. * SimpleChat:DU: Switch trim garbage hist based to maxUniq simple Instead of blindly building histogram for specified substring length, and then checking if any new char within specified min garbage length limit, NOW exit learn state when specified maxUniq chars are found. Inturn there should be no new chars with in the specified min garbage length required limit. TODO: Need to track char classes like alphabets, numerals and special/other chars. * SimpleChat:DU: Bring in maxType to the mix along with maxUniq Allow for more uniq chars, but then ensure that a given type of char ie numerals or alphabets or other types dont cross the specified maxType limit. This allows intermixed text garbage to be identified and trimmed. * SimpleChat:DU: Cleanup debug log messages * SimpleChat:UI: Move html ui base helpers into its own module * SimpleChat:DU:Avoid setting frequence/Presence penalty Some models like llama3 found to try to be over intelligent by repeating garbage still, but by tweaking the garbage a bit so that it is not exactly same. So avoid setting these penalties and let the model's default behaviour work out, as is. Also the simple minded histogram based garbage trimming from end, works to an extent, when the garbage is more predictable and repeatative. * SimpleChat:UI: Add and use a para-create-append helper Also update the config params dump to indicate that now one needs to use document to get hold of gMe global object, this is bcas of moving to module type js. Also add ui.mjs to importmap * SimpleChat:UI: Helper to create bool button and use it wrt settings * SimpleChat:UI: Add Select helper and use it wrt ChatHistoryInCtxt * SimpleChat:UI:Select: dict-name-value, value wrt default, change Take a dict/object of name-value pairs instead of just names. Inturn specify the actual value wrt default, rather than the string representing that value. Trap the needed change event rather than click wrt select. * SimpleChat:UI: Add Div wrapped label+element helpers Move settings related elements to use the new div wrapped ones. * SimpleChat:UI:Add settings button and bring in settings ui * SimpleChat:UI:Settings make boolean button text show meaning * SimpleChat: Update a bit wrt readme and notes in du * SimpleChat: GarbageTrim enable/disable, show trimmed part ifany * SimpleChat: highlight trim, garbage trimming bitmore aggressive Make it easy for end user to identified the trimmed text. Make garbage trimming logic, consider a longer repeat garbage substring. * SimpleChat: Cleanup a bit wrt Api end point related flow Consolidate many of the Api end point related basic meta data into ApiEP class. Remove the hardcoded ApiEP/Mode settings from html+js, instead use the generic select helper logic, inturn in the settings block. Move helper to generate the appropriate request json string based on ApiEP into SimpleChat class itself. * SimpleChat:Move extracting assistant response to SimpleChat class so also the trimming of garbage. * SimpleChat:DU: Bring in both trim garbage logics to try trim * SimpleChat: Cleanup readme a bit, add one more chathistory length * SimpleChat:Stream:Initial handshake skeleton Parse the got stream responses and try extract the data from it. It allows for a part read to get a single data line or multiple data line. Inturn extract the json body and inturn the delta content/message in it. * SimpleChat: Move handling oneshot mode server response Move handling of the oneshot mode server response into SimpleChat. Also add plumbing for moving multipart server response into same. * SimpleChat: Move multi part server response handling in * SimpleChat: Add MultiPart Response handling, common trimming Add logic to call into multipart/stream server response handling. Move trimming of garbage at the end into the common handle_response helper. Add new global flag to control between oneshot and multipart/stream mode of fetching response. Allow same to be controlled by user. If in multipart/stream mode, send the stream flag to the server. * SimpleChat: show streamed generative text as it becomes available Now that the extracting of streamed generated text is implemented, add logic to show the same on the screen. * SimpleChat:DU: Add NewLines helper class To work with an array of new lines. Allow adding, appending, shifting, ... * SimpleChat:DU: Make NewLines shift more robust and flexible * SimpleChat:HandleResponseMultiPart using NewLines helper Make handle_response_multipart logic better and cleaner. Now it allows for working with the situation, where the delta data line got from server in stream mode, could be split up when recving, but still the logic will handle it appropriately. ALERT: Rather except (for now) for last data line wrt a request's response. * SimpleChat: Disable console debug by default by making it dummy Parallely save a reference to the original func. * SimpleChat:MultiPart/Stream flow cleanup Dont try utf8-decode and newlines-add_append if no data to work on. If there is no more data to get (ie done is set), then let NewLines instance return line without newline at end, So that we dont miss out on any last-data-line without newline kind of scenario. Pass stream flag wrt utf-8 decode, so that if any multi-byte char is only partly present in the passed buffer, it can be accounted for along with subsequent buffer. At sametime, bcas of utf-8's characteristics there shouldnt be any unaccounted bytes at end, for valid block of utf8 data split across chunks, so not bothering calling with stream set to false at end. LATER: Look at TextDecoder's implementation, for any over intelligence, it may be doing.. If needed, one can use done flag to account wrt both cases. * SimpleChat: Move baseUrl to Me and inturn gMe This should allow easy updating of the base url at runtime by the end user. * SimpleChat:UI: Add input element helper * SimpleChat: Add support for changing the base url This ensures that if the user is running the server with a different port or wants to try connect to server on a different machine, then this can be used. * SimpleChat: Move request headers into Me and gMe Inturn allow Authorization to be sent, if not empty. * SimpleChat: Rather need to use append to insert headers * SimpleChat: Allow Authorization header to be set by end user * SimpleChat:UI+: Return div and element wrt creatediv helpers use it to set placeholder wrt Authorization header. Also fix copy-paste oversight. * SimpleChat: readme wrt authorization, maybe minimal openai testing * SimpleChat: model request field for openai/equivalent compat May help testing with openai/equivalent web services, if they require this field. * SimpleChat: readme stream-utf-8 trim-english deps, exception2error * Readme: Add a entry for simplechat in the http server section * SimpleChat:WIP:Collate internally, Stream mode Trap exceptions This can help ensure that data fetched till that point, can be made use of, rather than losing it. On some platforms, the time taken wrt generating a long response, may lead to the network connection being broken when it enters some user-no-interaction related power saving mode. * SimpleChat:theResp-origMsg: Undo a prev change to fix non trim When the response handling was moved into SimpleChat, I had changed a flow bit unnecessarily and carelessly, which resulted in the non trim flow, missing out on retaining the ai assistant response. This has been fixed now. * SimpleChat: Save message internally in handle_response itself This ensures that throwing the caught exception again for higher up logic, doesnt lose the response collated till that time. Go through theResp.assistant in catch block, just to keep simple consistency wrt backtracing just in case. Update the readme file. * SimpleChat:Cleanup: Add spacing wrt shown req-options * SimpleChat:UI: CreateDiv Divs map to GridX2 class This allows the settings ui to be cleaner structured. * SimpleChat: Show Non SettingsUI config field by default * SimpleChat: Allow for multiline system prompt Convert SystemPrompt into a textarea with 2 rows. Reduce user-input-textarea to 2 rows from 3, so that overall vertical space usage remains same. Shorten usage messages a bit, cleanup to sync with settings ui. * SimpleChat: Add basic skeleton for saving and loading chat Inturn when ever a chat message (system/user/model) is added, the chat will be saved into browser's localStorage. * SimpleChat:ODS: Add a prefix to chatid wrt ondiskstorage key * SimpleChat:ODS:WIP:TMP: Add UI to load previously saved chat This is a temporary flow * SimpleChat:ODS:Move restore/load saved chat btn setup to Me This also allows being able to set the common system prompt ui element to loaded chat's system prompt. * SimpleChat:Readme updated wrt save and restore chat session info * SimpleChat:Show chat session restore button, only if saved session * SimpleChat: AutoCreate ChatRequestOptions settings to an extent * SimpleChat: Update main README wrt usage with server
1118 lines
61 KiB
Markdown
1118 lines
61 KiB
Markdown
# llama.cpp
|
||
|
||
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
|
||
|
||
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
|
||
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||
[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp)
|
||
|
||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||
|
||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||
|
||
### Recent API changes
|
||
|
||
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
||
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
|
||
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
|
||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
|
||
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
|
||
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
|
||
|
||
### Hot topics
|
||
|
||
- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
|
||
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
|
||
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
|
||
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
|
||
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
||
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
|
||
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
|
||
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
|
||
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
|
||
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
|
||
|
||
----
|
||
|
||
<details>
|
||
<summary>Table of Contents</summary>
|
||
<ol>
|
||
<li>
|
||
<a href="#description">Description</a>
|
||
</li>
|
||
<li>
|
||
<a href="#usage">Usage</a>
|
||
<ul>
|
||
<li><a href="#get-the-code">Get the Code</a></li>
|
||
<li><a href="#build">Build</a></li>
|
||
<li><a href="#blas-build">BLAS Build</a></li>
|
||
<li><a href="#prepare-and-quantize">Prepare and Quantize</a></li>
|
||
<li><a href="#run-the-quantized-model">Run the quantized model</a></li>
|
||
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
|
||
<li><a href="#quantization">Quantization</a></li>
|
||
<li><a href="#interactive-mode">Interactive mode</a></li>
|
||
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
|
||
<li><a href="#instruct-mode">Instruct mode</a></li>
|
||
<li><a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a></li>
|
||
<li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
|
||
<li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
|
||
<li><a href="#android">Android</a></li>
|
||
<li><a href="#docker">Docker</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#contributing">Contributing</a></li>
|
||
<li><a href="#coding-guidelines">Coding guidelines</a></li>
|
||
<li><a href="#docs">Docs</a></li>
|
||
</ol>
|
||
</details>
|
||
|
||
## Description
|
||
|
||
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
|
||
variety of hardware - locally and in the cloud.
|
||
|
||
- Plain C/C++ implementation without any dependencies
|
||
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
|
||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
|
||
- Vulkan, SYCL, and (partial) OpenCL backend support
|
||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||
|
||
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
|
||
improved significantly thanks to many contributions. It is the main playground for developing new features for the
|
||
[ggml](https://github.com/ggerganov/ggml) library.
|
||
|
||
**Supported platforms:**
|
||
|
||
- [X] Mac OS
|
||
- [X] Linux
|
||
- [X] Windows (via CMake)
|
||
- [X] Docker
|
||
- [X] FreeBSD
|
||
|
||
**Supported models:**
|
||
|
||
Typically finetunes of the base models below are supported as well.
|
||
|
||
- [X] LLaMA 🦙
|
||
- [x] LLaMA 2 🦙🦙
|
||
- [x] LLaMA 3 🦙🦙🦙
|
||
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
|
||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
|
||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||
- [X] [StableLM models](https://huggingface.co/stabilityai)
|
||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
|
||
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
|
||
- [x] [GPT-2](https://huggingface.co/gpt2)
|
||
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
|
||
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
|
||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
||
- [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf)
|
||
- [x] [Xverse](https://huggingface.co/models?search=xverse)
|
||
- [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r)
|
||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||
- [x] [OLMo](https://allenai.org/olmo)
|
||
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
|
||
|
||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
|
||
|
||
**Multimodal models:**
|
||
|
||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
|
||
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
|
||
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
|
||
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
|
||
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
|
||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
|
||
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
||
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
||
|
||
**HTTP server**
|
||
|
||
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
|
||
|
||
[simplechat](./examples/server/public_simplechat) is a simple chat client, which can be used to chat with the model exposed using above web server (use --path to point to simplechat), from a local web browser.
|
||
|
||
**Bindings:**
|
||
|
||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
|
||
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
|
||
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
|
||
- Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama)
|
||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
|
||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
|
||
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
|
||
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
|
||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||
|
||
**UI:**
|
||
|
||
Unless otherwise noted these projects are open-source with permissive licensing:
|
||
|
||
- [iohub/collama](https://github.com/iohub/coLLaMA)
|
||
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
|
||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||
- [Faraday](https://faraday.dev/) (proprietary)
|
||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||
- [Layla](https://play.google.com/store/apps/details?id=com.laylalite) (proprietary)
|
||
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
|
||
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
|
||
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
|
||
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
|
||
- [ollama/ollama](https://github.com/ollama/ollama)
|
||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
|
||
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
|
||
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
|
||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||
- [RecurseChat](https://recurse.chat/) (proprietary)
|
||
- [semperai/amica](https://github.com/semperai/amica)
|
||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
|
||
- [Msty](https://msty.app) (proprietary)
|
||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file)(Apachev2.0 or later)
|
||
- [Dot](https://github.com/alexpinel/Dot) (GPL)
|
||
- [MindMac](https://mindmac.app) (proprietary)
|
||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||
- [AIKit](https://github.com/sozercan/aikit) (MIT)
|
||
|
||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||
|
||
**Tools:**
|
||
|
||
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
||
|
||
---
|
||
|
||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
||
|
||
```
|
||
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
||
I llama.cpp build info:
|
||
I UNAME_S: Darwin
|
||
I UNAME_P: arm
|
||
I UNAME_M: arm64
|
||
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
|
||
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
|
||
I LDFLAGS: -framework Accelerate
|
||
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||
|
||
make: Nothing to be done for `default'.
|
||
main: build = 1041 (cf658ad)
|
||
main: seed = 1692823051
|
||
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
|
||
llama_model_loader: - type f32: 81 tensors
|
||
llama_model_loader: - type q4_0: 281 tensors
|
||
llama_model_loader: - type q6_K: 1 tensors
|
||
llm_load_print_meta: format = GGUF V1 (latest)
|
||
llm_load_print_meta: arch = llama
|
||
llm_load_print_meta: vocab type = SPM
|
||
llm_load_print_meta: n_vocab = 32000
|
||
llm_load_print_meta: n_merges = 0
|
||
llm_load_print_meta: n_ctx_train = 4096
|
||
llm_load_print_meta: n_ctx = 512
|
||
llm_load_print_meta: n_embd = 5120
|
||
llm_load_print_meta: n_head = 40
|
||
llm_load_print_meta: n_head_kv = 40
|
||
llm_load_print_meta: n_layer = 40
|
||
llm_load_print_meta: n_rot = 128
|
||
llm_load_print_meta: n_gqa = 1
|
||
llm_load_print_meta: f_norm_eps = 1.0e-05
|
||
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
||
llm_load_print_meta: n_ff = 13824
|
||
llm_load_print_meta: freq_base = 10000.0
|
||
llm_load_print_meta: freq_scale = 1
|
||
llm_load_print_meta: model type = 13B
|
||
llm_load_print_meta: model ftype = mostly Q4_0
|
||
llm_load_print_meta: model size = 13.02 B
|
||
llm_load_print_meta: general.name = LLaMA v2
|
||
llm_load_print_meta: BOS token = 1 '<s>'
|
||
llm_load_print_meta: EOS token = 2 '</s>'
|
||
llm_load_print_meta: UNK token = 0 '<unk>'
|
||
llm_load_print_meta: LF token = 13 '<0x0A>'
|
||
llm_load_tensors: ggml ctx size = 0.11 MB
|
||
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
|
||
...................................................................................................
|
||
llama_new_context_with_model: kv self size = 400.00 MB
|
||
llama_new_context_with_model: compute buffer total size = 75.41 MB
|
||
|
||
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
|
||
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
|
||
|
||
|
||
Building a website can be done in 10 simple steps:
|
||
Step 1: Find the right website platform.
|
||
Step 2: Choose your domain name and hosting plan.
|
||
Step 3: Design your website layout.
|
||
Step 4: Write your website content and add images.
|
||
Step 5: Install security features to protect your site from hackers or spammers
|
||
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
|
||
Step 7: Test it again with people who are not related to you personally – friends or family members will work just fine!
|
||
Step 8: Start marketing and promoting the website via social media channels or paid ads
|
||
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
|
||
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
|
||
How does a Website Work?
|
||
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit – whether it’s an image or text file (like PDFs). In order for someone else’s browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
|
||
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols – this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
|
||
How to
|
||
llama_print_timings: load time = 576.45 ms
|
||
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
|
||
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
|
||
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
|
||
llama_print_timings: total time = 25431.49 ms
|
||
```
|
||
|
||
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
|
||
|
||
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
|
||
|
||
## Usage
|
||
|
||
Here are the end-to-end binary build and model conversion steps for most supported models.
|
||
|
||
### Get the Code
|
||
|
||
```bash
|
||
git clone https://github.com/ggerganov/llama.cpp
|
||
cd llama.cpp
|
||
```
|
||
|
||
### Build
|
||
|
||
In order to build llama.cpp you have four different options.
|
||
|
||
- Using `make`:
|
||
- On Linux or MacOS:
|
||
|
||
```bash
|
||
make
|
||
```
|
||
|
||
- On Windows:
|
||
|
||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||
2. Extract `w64devkit` on your pc.
|
||
3. Run `w64devkit.exe`.
|
||
4. Use the `cd` command to reach the `llama.cpp` folder.
|
||
5. From here you can run:
|
||
```bash
|
||
make
|
||
```
|
||
|
||
- Notes:
|
||
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
|
||
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||
- For debug builds, run `make LLAMA_DEBUG=1`
|
||
|
||
- Using `CMake`:
|
||
|
||
```bash
|
||
cmake -B build
|
||
cmake --build build --config Release
|
||
```
|
||
|
||
**Notes**:
|
||
|
||
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
|
||
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||
- For debug builds, there are two cases:
|
||
|
||
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
||
|
||
```bash
|
||
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
||
cmake --build build
|
||
```
|
||
|
||
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
||
|
||
```bash
|
||
cmake -B build -G "Xcode"
|
||
cmake --build build --config Debug
|
||
```
|
||
|
||
- Using `Zig` (version 0.11 or later):
|
||
|
||
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
|
||
it's also possible to cross compile for other operating systems and architectures:
|
||
|
||
```bash
|
||
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
|
||
```
|
||
|
||
The `zig targets` command will give you valid options to use.
|
||
|
||
- Using `gmake` (FreeBSD):
|
||
|
||
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
||
2. Add your user to **video** group
|
||
3. Install compilation dependencies.
|
||
|
||
```bash
|
||
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
|
||
opencl clblast openblas
|
||
|
||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||
```
|
||
|
||
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
|
||
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
||
the instructions for use and activate this options in this document below.
|
||
|
||
### Homebrew
|
||
|
||
On Mac and Linux, the homebrew package manager can be used via
|
||
```
|
||
brew install llama.cpp
|
||
```
|
||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||
|
||
### Metal Build
|
||
|
||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
|
||
|
||
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
||
argument.
|
||
|
||
### BLAS Build
|
||
|
||
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
|
||
|
||
- #### Accelerate Framework:
|
||
|
||
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
|
||
|
||
- #### OpenBLAS:
|
||
|
||
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
|
||
|
||
- Using `make`:
|
||
- On Linux:
|
||
```bash
|
||
make LLAMA_OPENBLAS=1
|
||
```
|
||
|
||
- On Windows:
|
||
|
||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
|
||
3. Extract `w64devkit` on your pc.
|
||
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
|
||
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
|
||
6. Run `w64devkit.exe`.
|
||
7. Use the `cd` command to reach the `llama.cpp` folder.
|
||
8. From here you can run:
|
||
|
||
```bash
|
||
make LLAMA_OPENBLAS=1
|
||
```
|
||
|
||
- Using `CMake` on Linux:
|
||
|
||
```bash
|
||
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||
cmake --build build --config Release
|
||
```
|
||
|
||
- #### BLIS
|
||
|
||
Check [BLIS.md](docs/BLIS.md) for more information.
|
||
|
||
- #### SYCL
|
||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
|
||
|
||
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
|
||
|
||
For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
|
||
|
||
- #### Intel oneMKL
|
||
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
|
||
|
||
- Using manual oneAPI installation:
|
||
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
|
||
```bash
|
||
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
|
||
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
|
||
cmake --build build --config Release
|
||
```
|
||
|
||
- Using oneAPI docker image:
|
||
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
|
||
|
||
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
|
||
|
||
- #### CUDA
|
||
|
||
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||
|
||
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
|
||
|
||
- Using `make`:
|
||
```bash
|
||
make LLAMA_CUDA=1
|
||
```
|
||
- Using `CMake`:
|
||
|
||
```bash
|
||
cmake -B build -DLLAMA_CUDA=ON
|
||
cmake --build build --config Release
|
||
```
|
||
|
||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
|
||
|
||
| Option | Legal values | Default | Description |
|
||
|--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||
| LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of dequantization + matrix multiplication kernels instead of leveraging Math libraries. | |
|
||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||
| LLAMA_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||
|
||
- #### hipBLAS
|
||
|
||
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||
Make sure to have ROCm installed.
|
||
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
|
||
|
||
- Using `make`:
|
||
```bash
|
||
make LLAMA_HIPBLAS=1
|
||
```
|
||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||
```bash
|
||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||
&& cmake --build build --config Release -- -j 16
|
||
```
|
||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON`.
|
||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||
|
||
Note that if you get the following error:
|
||
```
|
||
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||
```
|
||
Try searching for a directory under `HIP_PATH` that contains the file
|
||
`oclc_abi_version_400.bc`. Then, add the following to the start of the
|
||
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
|
||
like:
|
||
```bash
|
||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||
&& cmake --build build -- -j 16
|
||
```
|
||
|
||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||
```bash
|
||
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||
```
|
||
|
||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||
```bash
|
||
set PATH=%HIP_PATH%\bin;%PATH%
|
||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||
cmake --build build
|
||
```
|
||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||
|
||
|
||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
||
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||
|
||
| Option | Legal values | Default | Description |
|
||
|-------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||
|
||
- #### CLBlast
|
||
|
||
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
||
|
||
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
|
||
- For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
|
||
|
||
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
|
||
|
||
- <details>
|
||
<summary>Installing the OpenCL SDK from source</summary>
|
||
|
||
```sh
|
||
git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
|
||
cd OpenCL-SDK
|
||
cmake -B build -DBUILD_DOCS=OFF \
|
||
-DBUILD_EXAMPLES=OFF \
|
||
-DBUILD_TESTING=OFF \
|
||
-DOPENCL_SDK_BUILD_SAMPLES=OFF \
|
||
-DOPENCL_SDK_TEST_SAMPLES=OFF
|
||
cmake --build build
|
||
cmake --install build --prefix /some/path
|
||
```
|
||
</details>
|
||
|
||
##### Installing CLBlast
|
||
|
||
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
|
||
|
||
Linux packaging:
|
||
Fedora Linux:
|
||
```bash
|
||
sudo dnf install clblast
|
||
```
|
||
|
||
Alternatively, they may be built from source.
|
||
|
||
- <details>
|
||
<summary>Windows:</summary>
|
||
|
||
```cmd
|
||
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
|
||
git clone https://github.com/CNugteren/CLBlast.git
|
||
cd CLBlast
|
||
cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
|
||
cmake --build build --config Release
|
||
cmake --install build --prefix C:/CLBlast
|
||
```
|
||
|
||
(note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds)
|
||
|
||
- <details>
|
||
<summary>Unix:</summary>
|
||
|
||
```sh
|
||
git clone https://github.com/CNugteren/CLBlast.git
|
||
cd CLBlast
|
||
cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
|
||
cmake --build build --config Release
|
||
cmake --install build --prefix /some/path
|
||
```
|
||
|
||
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
|
||
</details>
|
||
|
||
##### Building Llama with CLBlast
|
||
|
||
- Build with make:
|
||
```sh
|
||
make LLAMA_CLBLAST=1
|
||
```
|
||
- CMake (Unix):
|
||
```sh
|
||
cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||
cmake --build build --config Release
|
||
```
|
||
- CMake (Windows):
|
||
```cmd
|
||
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
|
||
git clone https://github.com/ggerganov/llama.cpp
|
||
cd llama.cpp
|
||
cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
|
||
cmake --build build --config Release
|
||
cmake --install build --prefix C:/LlamaCPP
|
||
```
|
||
|
||
##### Running Llama with CLBlast
|
||
|
||
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.
|
||
|
||
To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`.
|
||
The selection can be a number (starting from 0) or a text string to search:
|
||
|
||
```sh
|
||
GGML_OPENCL_PLATFORM=1 ./main ...
|
||
GGML_OPENCL_DEVICE=2 ./main ...
|
||
GGML_OPENCL_PLATFORM=Intel ./main ...
|
||
GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
|
||
```
|
||
|
||
The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful.
|
||
Using the variables it is possible to select a CPU-based driver as well, if so desired.
|
||
|
||
You can get a list of platforms and devices from the `clinfo -l` command, etc.
|
||
|
||
- #### Vulkan
|
||
|
||
**With docker**:
|
||
|
||
You don't need to install Vulkan SDK. It will be installed inside the container.
|
||
|
||
```sh
|
||
# Build the image
|
||
docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
|
||
|
||
# Then, use it:
|
||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||
```
|
||
|
||
**Without docker**:
|
||
|
||
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
|
||
|
||
For example, on Ubuntu 22.04 (jammy), use the command below:
|
||
|
||
```bash
|
||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
|
||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||
apt update -y
|
||
apt-get install -y vulkan-sdk
|
||
# To verify the installation, use the command below:
|
||
vulkaninfo
|
||
```
|
||
|
||
Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
|
||
|
||
Then, build llama.cpp using the cmake command below:
|
||
|
||
```bash
|
||
cmake -B build -DLLAMA_VULKAN=1
|
||
cmake --build build --config Release
|
||
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
|
||
./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
|
||
|
||
# You should see in the output, ggml_vulkan detected your GPU. For example:
|
||
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
|
||
```
|
||
|
||
### Prepare and Quantize
|
||
|
||
> [!NOTE]
|
||
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
|
||
|
||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||
|
||
Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives.
|
||
It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||
|
||
```bash
|
||
# obtain the official LLaMA model weights and place them in ./models
|
||
ls ./models
|
||
llama-2-7b tokenizer_checklist.chk tokenizer.model
|
||
# [Optional] for models using BPE tokenizers
|
||
ls ./models
|
||
<folder containing weights and tokenizer json> vocab.json
|
||
# [Optional] for PyTorch .bin models like Mistral-7B
|
||
ls ./models
|
||
<folder containing weights and tokenizer json>
|
||
|
||
# install Python dependencies
|
||
python3 -m pip install -r requirements.txt
|
||
|
||
# convert the model to ggml FP16 format
|
||
python3 convert-hf-to-gguf.py models/mymodel/
|
||
|
||
# [Optional] for models using BPE tokenizers
|
||
python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe
|
||
|
||
# quantize the model to 4-bits (using Q4_K_M method)
|
||
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||
|
||
# update the gguf filetype to current version if older version is now unsupported
|
||
./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
|
||
```
|
||
|
||
### Run the quantized model
|
||
|
||
```bash
|
||
# start inference on a gguf model
|
||
./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
|
||
```
|
||
|
||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||
|
||
### Running on Windows with prebuilt binaries
|
||
|
||
You will find prebuilt Windows binaries on the release page.
|
||
|
||
Simply download and extract the latest zip package of choice: (e.g. `llama-b1380-bin-win-avx2-x64.zip`)
|
||
|
||
From the unzipped folder, open a terminal/cmd window here and place a pre-converted `.gguf` model file. Test out the main example like so:
|
||
|
||
```
|
||
.\main -m llama-2-7b.Q4_0.gguf -n 128
|
||
```
|
||
|
||
### Memory/Disk Requirements
|
||
|
||
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||
|
||
| Model | Original size | Quantized size (Q4_0) |
|
||
|------:|--------------:|----------------------:|
|
||
| 7B | 13 GB | 3.9 GB |
|
||
| 13B | 24 GB | 7.8 GB |
|
||
| 30B | 60 GB | 19.5 GB |
|
||
| 65B | 120 GB | 38.5 GB |
|
||
|
||
### Quantization
|
||
|
||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||
|
||
*(outdated)*
|
||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
|
||
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
|
||
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
|
||
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|
||
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
|
||
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
|
||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||
|
||
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
||
- recent k-quants improvements and new i-quants
|
||
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
||
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
||
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
|
||
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
|
||
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
|
||
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
|
||
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
|
||
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
|
||
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
|
||
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
|
||
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
|
||
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
|
||
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
|
||
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
|
||
|
||
### Perplexity (measuring model quality)
|
||
|
||
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
|
||
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).
|
||
|
||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
||
|
||
#### How to run
|
||
|
||
1. Download/extract: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
||
3. Output:
|
||
```
|
||
perplexity : calculating perplexity over 655 chunks
|
||
24.43 seconds per pass - ETA 4.45 hours
|
||
[1]4.5970,[2]5.1807,[3]6.0382,...
|
||
```
|
||
And after 4.45 hours, you will have the final perplexity.
|
||
|
||
### Interactive mode
|
||
|
||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||
|
||
Here is an example of a few-shot interaction, invoked with the command
|
||
|
||
```bash
|
||
# default arguments using a 7B model
|
||
./examples/chat.sh
|
||
|
||
# advanced chat with a 13B model
|
||
./examples/chat-13B.sh
|
||
|
||
# custom arguments using a 13B model
|
||
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||
```
|
||
|
||
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
|
||
|
||
![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png)
|
||
|
||
### Persistent Interaction
|
||
|
||
The prompt, user inputs, and model generations can be saved and resumed across calls to `./main` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
|
||
|
||
```bash
|
||
# Start a new chat
|
||
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
|
||
|
||
# Resume that chat
|
||
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
|
||
|
||
# Start a different chat with the same prompt/model
|
||
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh
|
||
|
||
# Different prompt cache for different prompt/model
|
||
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
|
||
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
|
||
```
|
||
|
||
### Constrained output with grammars
|
||
|
||
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
|
||
|
||
```bash
|
||
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
|
||
```
|
||
|
||
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
|
||
|
||
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
|
||
|
||
### Instruct mode
|
||
|
||
1. First, download and place the `ggml` model into the `./models` folder
|
||
2. Run the `main` tool like this:
|
||
|
||
```
|
||
./examples/alpaca.sh
|
||
```
|
||
|
||
Sample run:
|
||
|
||
```
|
||
== Running in interactive mode. ==
|
||
- Press Ctrl+C to interject at any time.
|
||
- Press Return to return control to LLaMA.
|
||
- If you want to submit another line, end your input in '\'.
|
||
|
||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||
|
||
> How many letters are there in the English alphabet?
|
||
There 26 letters in the English Alphabet
|
||
> What is the most common way of transportation in Amsterdam?
|
||
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
|
||
> List 5 words that start with "ca".
|
||
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
|
||
>
|
||
```
|
||
|
||
### Obtaining and using the Facebook LLaMA 2 model
|
||
|
||
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
|
||
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
|
||
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGUF)
|
||
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGUF)
|
||
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGUF)
|
||
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF)
|
||
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
|
||
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
|
||
|
||
### Seminal papers and background on the models
|
||
|
||
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
|
||
- LLaMA:
|
||
- [Introducing LLaMA: A foundational, 65-billion-parameter large language model](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)
|
||
- [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
|
||
- GPT-3
|
||
- [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
|
||
- GPT-3.5 / InstructGPT / ChatGPT:
|
||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||
|
||
### Android
|
||
|
||
#### Build on Android using Termux
|
||
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
|
||
```
|
||
apt update && apt upgrade -y
|
||
apt install git make cmake
|
||
```
|
||
|
||
It's recommended to move your model inside the `~/` directory for best performance:
|
||
```
|
||
cd storage/downloads
|
||
mv model.gguf ~/
|
||
```
|
||
|
||
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
|
||
|
||
#### Building the Project using Android NDK
|
||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||
|
||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||
```
|
||
$ mkdir build-android
|
||
$ cd build-android
|
||
$ export NDK=<your_ndk_directory>
|
||
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||
$ make
|
||
```
|
||
|
||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||
|
||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||
|
||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||
```
|
||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||
$cd /data/data/com.termux/files/home/bin
|
||
$chmod +x ./*
|
||
```
|
||
|
||
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||
|
||
```
|
||
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||
```
|
||
|
||
Now, you can start chatting:
|
||
```
|
||
$cd /data/data/com.termux/files/home/bin
|
||
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
|
||
```
|
||
|
||
Here's a demo of an interactive session running on Pixel 5 phone:
|
||
|
||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
||
|
||
### Docker
|
||
|
||
#### Prerequisites
|
||
* Docker must be installed and running on your system.
|
||
* Create a folder to store big models & intermediate files (ex. /llama/models)
|
||
|
||
#### Images
|
||
We have three Docker images available for this project:
|
||
|
||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||
|
||
Additionally, there the following images, similar to the above:
|
||
|
||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||
|
||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||
|
||
#### Usage
|
||
|
||
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
|
||
|
||
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
||
|
||
```bash
|
||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||
```
|
||
|
||
On completion, you are ready to play!
|
||
|
||
```bash
|
||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||
```
|
||
|
||
or with a light image:
|
||
|
||
```bash
|
||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||
```
|
||
|
||
or with a server image:
|
||
|
||
```bash
|
||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||
```
|
||
|
||
### Docker With CUDA
|
||
|
||
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
||
|
||
#### Building Locally
|
||
|
||
```bash
|
||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
|
||
docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .
|
||
```
|
||
|
||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||
|
||
The defaults are:
|
||
|
||
- `CUDA_VERSION` set to `11.7.1`
|
||
- `CUDA_DOCKER_ARCH` set to `all`
|
||
|
||
The resulting images, are essentially the same as the non-CUDA images:
|
||
|
||
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
||
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
|
||
|
||
#### Usage
|
||
|
||
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
|
||
|
||
```bash
|
||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
|
||
```
|
||
|
||
### Contributing
|
||
|
||
- Contributors can open PRs
|
||
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
|
||
- Collaborators will be invited based on contributions
|
||
- Any help with managing issues and PRs is very appreciated!
|
||
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
||
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
||
|
||
### Coding guidelines
|
||
|
||
- Avoid adding third-party dependencies, extra files, extra headers, etc.
|
||
- Always consider cross-compatibility with other operating systems and architectures
|
||
- Avoid fancy looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
|
||
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
|
||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||
|
||
![matmul](media/matmul.png)
|
||
|
||
### Docs
|
||
|
||
- [main](./examples/main/README.md)
|
||
- [server](./examples/server/README.md)
|
||
- [jeopardy](./examples/jeopardy/README.md)
|
||
- [BLIS](./docs/BLIS.md)
|
||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||
- [GBNF grammars](./grammars/README.md)
|