Daniel Bevenius e00d2a62dd
llava : add requirements.txt and update README.md (#5428)
* llava: add requirements.txt and update README.md

This commit adds a `requirements.txt` file to the `examples/llava`
directory. This file contains the required Python packages to run the
scripts in the `examples/llava` directory.

The motivation of this to make it easier for users to run the scripts in
`examples/llava`. This will avoid users from having to possibly run into
missing package issues if the packages are not installed on their system.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llava: fix typo in llava-surgery.py output

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-09 15:00:59 +02:00

63 lines
1.8 KiB
Markdown

# LLaVA
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants.
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
models are available.
After API is confirmed, more models will be supported / uploaded.
## Usage
Build with cmake or run `make llava-cli` to build it.
After building, run: `./llava-cli` to see the usage. For example:
```sh
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
## Model conversion
- Clone `llava-v15-7b` and `clip-vit-large-patch14-336` locally:
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
```
4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./convert.py ../llava-v1.5-7b
```
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
## TODO
- [ ] Support non-CPU backend for the image encoding part.
- [ ] Support different sampling methods.
- [ ] Support more model variants.