mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 06:39:25 +01:00
163 lines
5.7 KiB
Plaintext
163 lines
5.7 KiB
Plaintext
#include "common.cuh"
|
|
|
|
#include <cstdint>
|
|
|
|
#define FATTN_KQ_STRIDE 256
|
|
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
|
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
|
|
|
typedef void (* fattn_kernel_t)(
|
|
const char * __restrict__ Q,
|
|
const char * __restrict__ K,
|
|
const char * __restrict__ V,
|
|
const char * __restrict__ mask,
|
|
float * __restrict__ dst,
|
|
float2 * __restrict__ dst_meta,
|
|
const float scale,
|
|
const float max_bias,
|
|
const float m0,
|
|
const float m1,
|
|
const uint32_t n_head_log2,
|
|
const int ne00,
|
|
const int ne01,
|
|
const int ne02,
|
|
const int ne03,
|
|
const int ne10,
|
|
const int ne11,
|
|
const int ne12,
|
|
const int ne13,
|
|
const int ne31,
|
|
const int nb31,
|
|
const int nb01,
|
|
const int nb02,
|
|
const int nb03,
|
|
const int nb11,
|
|
const int nb12,
|
|
const int nb13,
|
|
const int ne0,
|
|
const int ne1,
|
|
const int ne2,
|
|
const int ne3);
|
|
|
|
template<int D, int parallel_blocks> // D == head size
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
__launch_bounds__(D, 1)
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
static __global__ void flash_attn_combine_results(
|
|
const float * __restrict__ VKQ_parts,
|
|
const float2 * __restrict__ VKQ_meta,
|
|
float * __restrict__ dst) {
|
|
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
|
|
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
|
|
dst += D * gridDim.y*blockIdx.x;
|
|
|
|
const int tid = threadIdx.x;
|
|
__builtin_assume(tid < D);
|
|
|
|
__shared__ float2 meta[parallel_blocks];
|
|
if (tid < 2*parallel_blocks) {
|
|
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
float kqmax = meta[0].x;
|
|
#pragma unroll
|
|
for (int l = 1; l < parallel_blocks; ++l) {
|
|
kqmax = max(kqmax, meta[l].x);
|
|
}
|
|
|
|
float VKQ_numerator = 0.0f;
|
|
float VKQ_denominator = 0.0f;
|
|
#pragma unroll
|
|
for (int l = 0; l < parallel_blocks; ++l) {
|
|
const float diff = meta[l].x - kqmax;
|
|
const float KQ_max_scale = expf(diff);
|
|
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
|
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
|
|
|
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
|
|
VKQ_denominator += KQ_max_scale * meta[l].y;
|
|
}
|
|
|
|
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
|
}
|
|
|
|
template <int D, int parallel_blocks>
|
|
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
|
|
const ggml_tensor * Q = dst->src[0];
|
|
const ggml_tensor * K = dst->src[1];
|
|
const ggml_tensor * V = dst->src[2];
|
|
|
|
const ggml_tensor * mask = dst->src[3];
|
|
|
|
ggml_tensor * KQV = dst;
|
|
|
|
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
|
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
|
|
|
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
|
|
|
ggml_cuda_pool & pool = ctx.pool();
|
|
cudaStream_t main_stream = ctx.stream();
|
|
|
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
|
|
if (parallel_blocks > 1) {
|
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
}
|
|
|
|
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
|
const int shmem = 0;
|
|
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
|
|
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
|
|
|
const uint32_t n_head = Q->ne[2];
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
|
(const char *) Q->data,
|
|
(const char *) K->data,
|
|
(const char *) V->data,
|
|
mask ? ((const char *) mask->data) : nullptr,
|
|
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
scale, max_bias, m0, m1, n_head_log2,
|
|
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
K->nb[1], K->nb[2], K->nb[3],
|
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
if ((parallel_blocks) == 1) {
|
|
return;
|
|
}
|
|
|
|
const dim3 block_dim_combine(D, 1, 1);
|
|
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
const int shmem_combine = 0;
|
|
|
|
flash_attn_combine_results<D, parallel_blocks>
|
|
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|