llama.cpp/examples/llava/README-glmedge.md
piDack 0cec062a63
llama : add support for GLM-Edge and GLM-Edge-V series models (#10573)
* add glm edge chat model

* use config partial_rotary_factor as rope ratio

* support for glm edge model

* vision model support

* remove debug info

* fix format

* llava.cpp trailing whitespace

* remove unused AutoTokenizer

* Update src/llama.cpp for not contain <|end|> or </s>

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add edge template

* fix chat template

* fix confict

* fix confict

* fix ci err

* fix format err

* fix template err

* 9b hf chat support

* format

* format clip.cpp

* fix format

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/llava/clip.cpp

* fix format

* minor : style

---------

Co-authored-by: liyuhang <yuhang.li@zhipuai.cn>
Co-authored-by: piDack <pcdack@hotmail.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: liyuhang <yuhang.li@aminer.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-02 09:48:46 +02:00

44 lines
1.6 KiB
Markdown

# GLMV-EDGE
Currently this implementation supports [glm-edge-v-2b](https://huggingface.co/THUDM/glm-edge-v-2b) and [glm-edge-v-5b](https://huggingface.co/THUDM/glm-edge-v-5b).
## Usage
Build with cmake or run `make llama-llava-cli` to build it.
After building, run: `./llama-llava-cli` to see the usage. For example:
```sh
./llama-llava-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf --image img_path/image.jpg -p "<|system|>\n system prompt <image><|user|>\n prompt <|assistant|>\n"
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
## GGUF conversion
1. Clone a GLMV-EDGE model ([2B](https://huggingface.co/THUDM/glm-edge-v-2b) or [5B](https://huggingface.co/THUDM/glm-edge-v-5b)). For example:
```sh
git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
```
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
```sh
python ./examples/llava/glmedge-surgery.py -m ../model_path
```
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
```sh
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
```
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
```sh
python convert_hf_to_gguf.py ../model_path
```
Now both the LLM part and the image encoder are in the `model_path` directory.