mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 01:29:09 +01:00
1c641e6aac
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew
* server: update refs -> llama-server
gitignore llama-server
* server: simplify nix package
* main: update refs -> llama
fix examples/main ref
* main/server: fix targets
* update more names
* Update build.yml
* rm accidentally checked in bins
* update straggling refs
* Update .gitignore
* Update server-llm.sh
* main: target name -> llama-cli
* Prefix all example bins w/ llama-
* fix main refs
* rename {main->llama}-cmake-pkg binary
* prefix more cmake targets w/ llama-
* add/fix gbnf-validator subfolder to cmake
* sort cmake example subdirs
* rm bin files
* fix llama-lookup-* Makefile rules
* gitignore /llama-*
* rename Dockerfiles
* rename llama|main -> llama-cli; consistent RPM bin prefixes
* fix some missing -cli suffixes
* rename dockerfile w/ llama-cli
* rename(make): llama-baby-llama
* update dockerfile refs
* more llama-cli(.exe)
* fix test-eval-callback
* rename: llama-cli-cmake-pkg(.exe)
* address gbnf-validator unused fread warning (switched to C++ / ifstream)
* add two missing llama- prefixes
* Updating docs for eval-callback binary to use new `llama-` prefix.
* Updating a few lingering doc references for rename of main to llama-cli
* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.
* Updating documentation references for lookup-merge and export-lora
* Updating two small `main` references missed earlier in the finetune docs.
* Update apps.nix
* update grammar/README.md w/ new llama-* names
* update llama-rpc-server bin name + doc
* Revert "update llama-rpc-server bin name + doc"
This reverts commit e474ef1df4
.
* add hot topic notice to README.md
* Update README.md
* Update README.md
* rename gguf-split & quantize bins refs in **/tests.sh
---------
Co-authored-by: HanClinto <hanclinto@gmail.com>
140 lines
5.2 KiB
Markdown
140 lines
5.2 KiB
Markdown
# LLaVA
|
|
|
|
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants,
|
|
as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants.
|
|
|
|
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
|
|
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
|
|
models are available.
|
|
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf)
|
|
|
|
After API is confirmed, more models will be supported / uploaded.
|
|
|
|
## Usage
|
|
Build with cmake or run `make llama-llava-cli` to build it.
|
|
|
|
After building, run: `./llama-llava-cli` to see the usage. For example:
|
|
|
|
```sh
|
|
./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
|
```
|
|
|
|
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
|
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
|
|
|
|
## LLaVA 1.5
|
|
|
|
1. Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example:
|
|
|
|
```sh
|
|
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
|
|
|
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
|
```
|
|
|
|
2. Install the required Python packages:
|
|
|
|
```sh
|
|
pip install -r examples/llava/requirements.txt
|
|
```
|
|
|
|
3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
|
|
|
```sh
|
|
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
|
```
|
|
|
|
4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
|
|
|
```sh
|
|
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
|
```
|
|
|
|
5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
|
|
|
```sh
|
|
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
|
|
```
|
|
|
|
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
|
|
|
|
## LLaVA 1.6 gguf conversion
|
|
1) First clone a LLaVA 1.6 model:
|
|
```console
|
|
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
|
```
|
|
|
|
2) Install the required Python packages:
|
|
|
|
```sh
|
|
pip install -r examples/llava/requirements.txt
|
|
```
|
|
|
|
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
|
```console
|
|
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
|
|
```
|
|
- you will find a llava.projector and a llava.clip file in your model directory
|
|
|
|
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
|
```console
|
|
mkdir vit
|
|
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
|
|
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
|
|
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
|
```
|
|
|
|
5) Create the visual gguf model:
|
|
```console
|
|
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
|
```
|
|
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
|
|
|
6) Then convert the model to gguf format:
|
|
```console
|
|
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
|
```
|
|
|
|
7) And finally we can run the llava cli using the 1.6 model version:
|
|
```console
|
|
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
|
|
```
|
|
|
|
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
|
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
|
|
|
|
## llava-cli templating and llava-1.6 prompting
|
|
|
|
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
|
|
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
|
|
|
|
**For Mistral and using llava-cli binary:**
|
|
Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"`
|
|
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
|
|
|
|
**For the 34B this should work:**
|
|
Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n`
|
|
|
|
|
|
## How to know if you are running in llava-1.5 or llava-1.6 mode
|
|
|
|
When running llava-cli you will see a visual information right before the prompt is being processed:
|
|
|
|
**Llava-1.5:**
|
|
`encode_image_with_clip: image embedding created: 576 tokens`
|
|
|
|
**Llava-1.6 (anything above 576):**
|
|
`encode_image_with_clip: image embedding created: 2880 tokens`
|
|
|
|
|
|
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
|
|
|
|
|
|
|
|
|
|
## TODO
|
|
|
|
- [x] Support non-CPU backend for the image encoding part.
|
|
- [ ] Support different sampling methods.
|
|
- [ ] Support more model variants.
|